М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Darkness171
Darkness171
17.03.2023 22:16 •  Алгебра

Найдите, множество первообразных для функции

👇
Ответ:
yanssen1976
yanssen1976
17.03.2023

f(x)=\dfrac{2\, dx}{(3x-4)^3}\\\\\\F(x)=\int \dfrac{2\, dx}{(3x-4)^3}=\Big[\; t=3x-4\ ,\ dt=3\, dx\; \Big]=\dfrac{2}{3}\int \dfrac{dt}{t^3}=\dfrac{2}{3}\cdot \dfrac{t^{-2}}{-2}+C=\\\\\\=-\dfrac{1}{3\, t^2}+C=-\dfrac{1}{3\, (3x-4)^2}+C

4,4(83 оценок)
Ответ:
Princess358ghhh
Princess358ghhh
17.03.2023

если подвести под знак дифференциала (3х-4),то получим dx=d(3x-4)/3

∫2dx/(3x-4)³=(2/3)∫d(3x-4)/(3x-4)³ и, используя инвариантность интеграла, найдем множество первообразных,

∫2dx/(3x-4)³=(2/3)∫d(3x-4)/(3x-4)³=(-(2/3)*(1/2)*/(3x-4)²)+с=

(-1/3)*(1/(3х-4)²)+с

4,5(82 оценок)
Открыть все ответы
Ответ:
Гасан9707
Гасан9707
17.03.2023
Дадим ФИЗИЧЕСКИЙ ответ на эту задачу:
Дано:
D₁=2 см      R₁=1 см
D₂= 3 см     R₂=1,5 см

m₂ - ?

Предположим, что шары изготовлены из одного и того же материала (у шаров одинаковая плотность ρ, что в условии задачи, к сожалению, не указано)
Масса тела определяется по формуле:
m=ρ*V
а его объем по формуле:
V = (4/3)*π*R³

Тогда:
m = (4/3)*ρ*π*R³

Имеем: 
m₁ = (4/3)*ρ*π*R₁³        (1)
m₂ = (4/3)*ρ*π*R₂³        (2)

Разделим (2) на (1) и после сокращения получаем ВАЖНОЕ правило:
m₂ / m₁ = (R₂/R₁)³
- отношение МАСС шаров равно КУБУ отношения их радиусов.

Подставляем данные:
m₂ / 48 = (1,5 /1)³
m₂ = 48*1,5² = 48*3,375 = 162 г
ответ:
МАССА шара (но не его ВЕС) равна 162 грамма
4,5(98 оценок)
Ответ:
Tytiki
Tytiki
17.03.2023
Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3

наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором
10- наименьшее двузначное число
10:4=2(ост 2)
11:4=2(ост 3)
11 - первый член прогрессии
(либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство
так как при делении на 4 остаток 3 общая форма 4k+3
4k+3>=10
4k>=10-3
4k>=7
4k>=7:4
k>=1.275
наименьшее натуральное k=2
при k=2: 4k+3=4*2+3=11
11 -первый член
)

далее
разность прогрессии равна числу на которое делим т.е. в данном случае 4

далее ищем последний член прогрессии
99- наибольшее двузначное
99:4=24(ост3)
значит 99 - последний член прогрессии
(либо с оценки неравенством
4l+3<=99
4l<=99-3
4l<=96
l<=96:4
l<=24
24 - Наибольшее натуральное удовлетворяющее неравенство
при l=24 : 4l+3=4*24+3=99
99- последний член прогрессии
)
далее определяем по формуле количество членов
n=\frac{a_n-a_1}{d}+1
n=\frac{99-11}{4}+1=23
и находим сумму по формуле
S_n=\frac{a_1+a_{23}}{2}*n
S_{23}=\frac{11+99}{2}*23=1265
ответ: 1265
4,6(11 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ