Чтобы умножить корни друг на друга, нужно записать подкоренные выражения в виде произведения подкоренных выражений в одном, двух или многих корнях, и постараться преобразовать их т.о., чтобы уже подкоренное выражение, если оно остается под корнем, не упрощалось, или полностью извлеклось из- под корня.
Примеры.1)√3*√18*√16*√48=√(3*18*16*48)=4√((3*(3²*2)*(4²*3))=4*4√(3⁴*2)
16*3²√2=144√2
2)√10*√15=√(2*5*3*5)=5√6
Если у вас корни с коэффициентами, то первое, что вы делаете, перемножаете, коэффициенты, и умножаете результат на корень, который преобразовываете по первому правилу. например, 2√72*5√12=(2*5)√(72*12)=10√(2*36*3*4)=10*6*2√6=120√6
Если перед корнем нет коэффициента, считаем коэффициентом единицу.
Если у вас перемножаются корни с разными показателями, например √32∛64, ищете НОК показателей. это 6 и делите его на каждый показатель, при этом подкоренное выражение возводите в степень, равную частному от деления НОК на показатель.
√32=корню шестой степени из 32⁶/²=32³, ∛64=корню шестой степени из 64⁶/³=64².
это вкратце все.
Объяснение:
1)одинаковыми значками отмечены равные стороны. Значит
СО=ОД=4
Ао=ОВ=3
∠СОА=∠ВОД - вертикальные.
ΔСОА≅ΔДОВ по двум сторонам и углу между ними. значит и третьи стороны равны СА=ВД=5
5+4+3=12
ответ Р=12 см.
2)ΔАВС≅ΔСДА - по трем сторонам. СВ=ДА=6,АВ=СД=4,АС=7. Р=7+6+4=17 см.
ответ Р=17 см
3)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС) ⇒КД=МД -против равных углов в равных треугольниках лежат равные стороны
КВ=ВМ -дано,ВД -общая.(равна сама себе) . Отсюда по трем сторонам ΔКВД≅ΔМВД что и требовалось доказать.
4)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС)
Відповідь:
На фото
Пояснення: