Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
1.Пусть f(x)=ax²+bx+c. Ясно, что a-b+c=f(-1). По условию f(-1)<0, и многочлен ax^2+bx+c не имеет действительных корней. Но это значит что парабола ax²+bx+c полностью находится ниже оси x и любое значение функции f(x) будет отрицательным. Значит f(0)=c<0 ответ: с<0. 2. y=(x^2+x)(x^2+9x+20) y'=(2x+1)(x^2+9x+20)+(2x+9)(x^2+x)=2(2x+5)(x^2+5x+2) 2(2x+5)(x^2+5x+2)=0 x=-5/2 x=-5/2+√17/2 x=-5/2-√17/2 Производная меняет знак с - на + в точках x=-5/2+√17/2, x=-5/2-√17/2 значит в этих точках функция имеет минимум. Подставляя значения в функцию находим y=-4. ответ: -4.
t=120:X
Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25).
Можем составить уравнение:
120:Х =120:1,2Х + 0,25
Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение:
144 = 120 + 0,3Х
-0,3Х = 120 - 144
-0,3Х = - 24
0,3Х = 24
Х = 24 : 0,3
Х = 80 (км\час, первоначальная скорость мотоциклиста).
ПРОВЕРКА:
120:80=1,5 (часа)
120:96+0,25=1,5(часа).