Объяснение:
здесь надо рассмотреть два случая
1) х-5>0, x>5, тогда |x-5|=x-5 и 1/(х-5) -2<0, (1-2x+10)/(x-5) <0,
(11-2x)/(x-5) <0 , - __(5)+___(5,5)___-___
общее решение x>5,5 (с учетом, что x-5>0)
2) x-5<0, x<5, тогда |x-5|=5-x и получим уравнение:
1/(5-x) -2<0, (1-10+2x)/ (5-x) <0, (2x-9)/ (5-x) <0
-___(4,5)+(5)___- и общее решение
x<4,5 (с учетом, что x-5<0) , объединяем два случая и
ответ: (-Б; 4,5) и (5,5; +Б) (Б- бесконечность)
ответ: k=-1,5
Объяснение:
У тебя есть уравнение y=kx+5 и точка D(6;-19).
У точки есть координаты. Они находятся в скобках. 1ое число в скобках - координата по оси X, а 2ое число - координата по оси Y ( D(X;Y) ). В уравнении графика функции тоже есть X и Y. Я имею ввиду то, что находится в скобках надо поставить в уравнение графика функции. После подстановки у нас получается обычное уравнение (в данном случае линейное):
-19=16k+5
1) 16k=-19-5
2) 16k=-24 | /16
3) k=-24/16 (-24/16 надо сократить на 8)
4) k=-3/2
5) k=-1,5
ответ: k=-1,5
1) x^2-4=0
x^2=4
x1=2
x2=-2
2)x^2-4x=0
x(x-4)=0
x1=0
x2=4