Это арифметическая прогрессия.
a1 = 1; d = 1; любое a(n) = n.
Нужно найти такое n, что S(n) <= 235; S(n+1) > 235.
{ S(n) = (a1 + a(n))*n/2 = (1 + n)*n/2 <= 235
{ S(n+1) = (a1 + a(n+1))*(n+1)/2 = (1 + n + 1)(n + 1)/2 > 235
Получаем
{ (n + 1)*n <= 470
{ (n + 2)(n + 1) > 470
Раскрываем скобки
{ n^2 + n - 470 <= 0
{ n^2 + 3n - 468 > 0
Решаем квадратные неравенства
{ D = 1 + 4*470 = 1881 ≈ 43,4^2
{ D = 9 + 4*468 = 1881 ≈ 43,4^2
Как ни странно, дискриминанта получились одинаковые.
{ n = (-1 + 43,4)/2 <= 21
{ n = (-3 + 43,4)/2 > 20
ответ 21.
ответ: нет решения
Объяснение: Размещением из n элементов по х называется любое упорядоченное подмножество из х элементов множества, состоящего из n различных элементов. Число размещений без повторений определяется по формуле
Aₙˣ= n!/(n-x)! Значит A²ₙ= n!/(n-2)!
Eсли комбинации из n элементов по x отличаются только составом элементов, то такие неупорядоченные комбинации называют сочетаниями из n элементов по x. Число сочетаний без повторений из n элементов по x определяется по формуле:
Cₙˣ= n!/ x!(n-x)! значит Сₙ²= n!/ 2!(n-2)!
Поэтому Сₙ² : Аₙ²= n!/ 2!(n-2)! : n!/(n-2)! = 1/2! = 1/2, т.к. 2!= 1·2=2
1/2 ≠ 32, значит уравнение не имеет решения