33,13 : 11,8 Это нужно считать столбиком. Сначала нужно перенести запятую в обеих числах на столько знаков вправо, чтобы второе число оказалось целым, в данном случае на один знак. Получается: 331.3 : 118. Дальше считаешь столбиком как есть. Можно сделать ещё так, чтобы и первое число было целым. Для этого в каждом числе нужно перенести запятую вправо на 2 знака, получится 3313 : 1180, и дальше столбиком или на калькуляторе, ну или устно, кто как считает:) Вот только целое число тут не получается, получается: 2,80762712...
(a + b)² = a² + 2ab + b² — формула квадрата суммы; (a — b)² = a² — 2ab + b² — соответственно, формула квадрата разности.
9x² + 24xy + 16y² Солдаты-квадраты (9x² и 16y²), как называет их мой учитель, стоят на своих местах, а в середине многочлена — их удвоенное произведение (2 × 3x × 4y); значит, смело можно утверждать, что перед нами квадрат суммы 3x и 4y, записывающийся так: (3x + 4y)², или, раскладывая на множители, (3x + 4y)(3x + 4y).
Проверка: (3x + 4y)(3x + 4y) = 9x² + 12xy + 12xy + 16y² = 9x² + 24xy + 16y². Мы получили то же выражение. Значит, мы всё решили правильно.
169 — (m + 11) = 169 — m — 11... И всё же я полагаю, что в данном выражении (m + 11) берут в квадрат, а не как ты написал. 169 — (m + 11)² = 13² — (m + 11)² = (13 — m — 11)(13 + m + 11) = (2 — m)(24 + m)
Можно раскрыть скобки, угадывать корни уравнения 4ой степени, потом раскладывать множители и искать оставшиеся корни. Но можно решить гораздо проще!
(x²-x-16)(x²-x+2) = 88
Пусть а=x²-x-7
Тогда исходное уравнение примет вид:
(a-9)(a+9)=88.
По формуле разности квадратов, получим:
а²-9² = 88; а² = 88+81 = 13²
а = ±13
1.
а = -13:
х²-х-7 = -13
х²-х+6 = 0
Уравнение не имеет решений.
2.
а = 13:
x²-x-7 = 13
x²-x-20 = 0
x = -4 или x=5
ответ: -4; 5.