М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
donaldavis1337
donaldavis1337
30.06.2021 14:35 •  Алгебра

КАКОЕ НАИМЕНЬШЕЕ ЗНАЧЕНИЕ МОЖЕТ ПРИНИМАТЬ ВЫРАЖЕНИЕ x^2-10x+20?​

👇
Открыть все ответы
Ответ:
oksakuvp01cde
oksakuvp01cde
30.06.2021
0,2(3)=\frac{23-2}{90}= \frac{21}{90}=\frac{7}{30}.
0,2(6)= \frac{26-2}{90}= \frac{24}{90}=\frac{4}{15}

Как перевести периодическую дробь в обыкновенную:
1) Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву k. У нас k=1.
2) Считаем количество цифр, стоящих после запятой, но до периода десятичной дроби. Обозначаем количество цифр за букву m. У нас m=1.
3) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа. Обозначаем полученное число буквой a. У нас а=23.
4) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Обозначаем полученное число буквой b. У нас b=2.
5) Подставляем найденные значения в формулу Y+ \frac{a-b}{99...9000..0}, где Y — целая часть бесконечной периодической дроби (у нас Y=0), количество девяток равно k, количество нулей равно m.

Вычислим примеры:
1) 0,2(3)-0,1=\frac{7}{30}-\frac{1}{10}=\frac{7-3}{30}=\frac{4}{30}=\frac{2}{15}=0,1(3)
2) 9\frac{11}{15}-\frac{4}{15}=\frac{146}{15}-\frac{4}{15}=\frac{131}{15}=8,7(3)
4,4(40 оценок)
Ответ:
miku1368
miku1368
30.06.2021

Дана функция у = (х-1)²/x².

1.Область определения функции. D ∈ R : x ≈ 0.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

График функции пересекает ось X при f = 0.

Значит, надо решить уравнение (х-1)²/x² = 0.

Решаем это уравнение (достаточно приравнять нулю числитель):

(х-1)² = 0, х-1 = 0, х = 1.

Точки пересечения с осью X: (1; 0).

График пересекает ось Y, когда x равняется 0.

Подставляем x = 0 в (x - 1)²/x².

Результат: (0 - 1)²/0² невыполним, значит, график не пересекает ось Оу.

3. Промежутки знакопостоянства функции.

Так как переменная в числителе и знаменателе в квадрате, то функция на всей числовой оси только положительна.

4. Симметрия графика (чётность или нечётность функции).

f(-x) = ((-x) - 1)²/((-x)²) = (x + 1)²/x² ≠ f(x) ≠ -f(-x).

Поэтому функция не чётная и не нечётная.

5. Периодичность графика. Не периодична.

6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - смотри приложение.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Первая производная: y' = (1/x²)*(2x - 2) - (2/x³)*(x - 1)²

или y' = (2x - 2)/x³.

Находим нули функции. Для этого приравниваем производную к нулю

(достаточно числитель): 2x-2 = 0

Откуда: x1 = 2/2 = 1.

(-∞ ;0) (0; 1) (1; +∞)

f'(x) > 0 f'(x) < 0 f'(x) > 0

функция возрастает функция убывает функция возрастает.

В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:

\frac{d^{2}}{d x^{2}} f{\left (x \right )} =

Вторая производная

\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right) = 0

Решаем это уравнение

Корни этого ур-ния

x_{1} = \frac{3}{2}

Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:

Точки, где есть неопределённость:

x_{1} = 0.

\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

- пределы равны, значит, пропускаем соответствующую точку.

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках

(-oo, 3/2]

Выпуклая на промежутках

[3/2, oo)

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - смотри приложение.

10. Дополнительные точки, позволяющие более точно построить график - даны в приложении.

11. Построение графика функции по проведенному исследованию дан в приложении.

4,7(82 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ