Дана функция у = 2х-3. Найдите точки пересечения с осями координат. ответ обоснуйте. b) Постройте график данной функции. с) Запишите в виде = + функцию, график которой параллелен графику у= 2х-3 и проходит через точку (2; –1). d) Обоснуйте расположение графика полученной функции в зависимости от значений k и b. ОЧЕНЬ НУЖНО ТОЛЬКО НОРМАЛЬНО ОТВЕТЬТЕ
1) x ∈ (-∞; -8) U (3; +∞)
2) x ∈ (-∞; -3) U (5; 7)
Объяснение:
1) x^2 + 5x - 24>0
x^2 + 5x - 24=0
D= √(b^2 - 4ac) = √(5^2 - 4 * 1 * (-24)) = √(25 + 96) = √121 = 11
x = (-b +/- √D)/2a
x1 = -5 + 11 / 2 =3
x2 = -5-11 /2 = -8
Получается три интервала:
x<-8
-8<x<3
x>3
чередуем знаки справа налево, первый - плюс (так как нам нужно больше, то выбираем там, где плюс)
получаем x<-8 и x>3
2) (x-5)(x-7)(x+3)<0
(x-5)(x-7)(x+3)=0
x = 0 тогда, когда один из множителей равен нулю:
x=5; x=7; x=-3
получаем четыре интервала (см фотку)
выбераем там, где минус, т. к. нужен знак < по условию
x<-3 и 5<x<7