Определите пересекает ли график функции f(x)=x³-x²-9x+9
ось x,и пересекается то в каких точках
Объяснение:
Если пересекает ось ох, то у=0.
x³-x²-9x+9 =0
(x³-x²)+(9x-9)=0
x²(х-1)+9(x-1)=0
(x²+9)(х-1)=0
x²+9>0, сумма двух положительных чисел-положительна
х-1=0 , х=1. Пересекает в точке (1;0)
Рассмотрим выражение: (a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc =
= a² + b² + c² + 2(ab+bc+ac) = a² + b² + c² + 2*13 = a² + b² + c² + 26, то есть
(a + b + c)² = a² + b² + c² + 26. С другой стороны по условию: а+b+c=5 ⇒
5² = a² + b² + c² + 26 ⇒ 25 = a² + b² + c² + 26, значит a² + b² + c² = - 1 < 0, что невозможно, если считать числа a, b, c действительными. А значит, они таковыми не являются.
ответ: поскольку сумма квадратов трех чисел отрицательна, то таких действительных чисел a, b, c, для каких выполнены равенства в условии – не существует.
{-3-√17 ; 4 }
Объяснение:
Уравнение x²-4|x|+2x-7=1 равносильно уравнению
x²-4|x|+2x-8=0.
1) Пусть x<0. Тогда, по определению модуля |x| = -x.
x²-4(-x)+2x-8=0 ⇔ x²+4x+2x-8=0 ⇔ x²+6x-8=0.
D=6²-4·1·(-8)=36+32=68.
x₁ = (-6-√68)/(2·1) = -3-√17 < 0 - подходит,
x₂ = (-6+√68)/(2·1) = -3+√17 > -3+√9 = -3 + 3 = 0 - не подходит.
2) Пусть x≥0. Тогда, по определению модуля |x| = x.
x²-4x+2x-8=0 ⇔ x²-2x-8=0.
D=(-2)²-4·1·(-8)=4+32=36=6².
x₁ = (2-6)/(2·1) = -2 < 0 - не подходит,
x₂ = (2+6)/(2·1) = 4 > 0 - подходит.
Объяснение:
Дана функция f(x)=x³-3x²-9x.
Общая схема исследования и построения графика функции
При построении графиков функций можно придерживаться следующего плана:
1. Найти область определения функции и область значений функции, выявить точки разрыва, если они есть - их нет, поэтому D(f) = R.
2. Выяснить, является ли функция четной или нечетной - ни та, ни другая.
3. Выяснить, является ли функция периодической - нет.
4. Найти точки пересечения графика с осями координат (нули функции).
Пересечение с осью ОУ: х = 0, у = 0,
с осью ОХ: у = 0, x³-3x²-9x = 0, вынесем х за скобки:
х(x²3x²-9) = 0, отсюда получаем значение первого корня:
х₁ = 0, далее приравниваем нулю квадратный трёхчлен:
x² - 3x - 9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-3)^2-4*1*(-9)=9-4*(-9)=9-(-4*9)=9-(-36)=9+36=45;
Дискриминант больше 0, уравнение имеет 2 корня:
x₂=(2root45-(-3))/(2*1)=(√45+3)/2=√45/2+3/2 = 3√2/2+1.5 ≈ 4.85410197;
x₃=(-√45-(-3))/(2*1)=(-√45+3)/2=-√45/2+3/2=-3√2/2+1.5≈-1.85410197.
5. Найти асимптоты графика - не имеет.
6. Вычислить производную функции f'(x) и определить критические точки.
f(x)=x³-3x²-9x, f'(x)=3x²-6x-9 приравниваем нулю:
3x²-6x-9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-6)^2-4*3*(-9)=36-4*3*(-9)=36-12*(-9)=36-(-12*9)=36-(-108)=36+108=144;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√144-(-6))/(2*3)=(12-(-6))/(2*3)=(12+6)/(2*3)=18/(2*3)=18/6=3;
x₂=(-√144-(-6))/(2*3)=(-12-(-6))/(2*3)=(-12+6)/(2*3)=-6/(2*3)=-6/6=-1.
Критические точки x₁ = 3, x₂ = -1.
7. Найти промежутки монотонности функции: (-∞;-1), (-1;3),(3;+∞).
8. Определить экстремумы функции f(x).
Надо определить знаки производной на промежутках монотонности.
х = -2, у' = 3*4 + 12 - 9 = 15 функция возрастающая,
х = 2, у' = 3*4 - 12 - 9 = -9 функция убывающая,
х = 4, у' = 3*16 - 24 - 9 = 15 функция возрастающая.
9. Вычислить вторую производную f''(x) = 6х - 6 = 6(х - 1).
10. Определить направление выпуклости графика и точки перегиба:
функция вогнутая на промежутках [1, oo),
выпуклая на промежутках (-oo, 1]
11. Построить график, используя полученные результаты исследования.