y = 2x^3 - 3x^2 - 12x + 1 – это кубическая функция, проверим имеет ли она максимумы и минимумы, для этого найдем производную и приравняв у нулю, найдем промежутки возрастания и убывания. Если они имеются.
y = (2x^3 - 3x^2 - 12x + 1)’ = 6x^2 – 6x – 12;
6x^2 – 6x – 12 = 0;
x^2 – x – 2 = 0;
D = b^2 – 4ac;
D = (- 1)^2 – 4 * 1 * (- 2) = 1 + 8 = 9; √D = 3;
x = (- b ± √D)/(2a);
x1 = (1 + 3)/2 = 4/2 = 2;
x2 = (1 - 3)/2 = - 2/2 = - 1
Точки с абсциссами (- 1) и 2 – являются экстремумами, но ни одна из них не принадлежит промежутку [4; 5]. Значит наибольшее значение функции будет либо в точке 4, либо в точке 5.
y(4) = 2 * 4^3 – 3 * 4^2 – 12 * 4 + 1 = 128 – 48 – 48 + 1 = 129 – 96 = 33
y(5) = 2 * 5^3 – 3 * 5^2 – 12 * 5 + 1 = 250 – 75 – 60 + 1 = 251 – 135 = 116 – это наибольшее значение функции на интервале [4; 5].
ответ. max [4; 5] y = у(5) = 116.
Так как степень отрицательная, знак не поменяется. То есть минус останется минусом -3*(-3)*(-3)=-27
Номер2:
Х^-5:х^3= х^-8
Когда делишь надо вычитать степени. Основание остаётся одинаковым, а степень -5-3= -8
Номер3:
А) приводишь все к одинаковому основанию т.е 2:
8 это 2^3 у тебя ещё 8 в квадрате=> (2^3)^2
Раскрывая скобку надо 3 умножить на 2. Значит 2 в 6 степени
2^-14 такой и остаётся
4 это 2 в квадрате, там ещё -6 степень => (2^2)^-6 умножаешь степени= 2^-12
2^6*2^-14
—————
2^-12
В знаменателе когда 2 числа умножаешь само основание 2 не изменяется, а степени надо прибавить т.е 6+(-14)= -8
2^-8
——-
2^-12
Основание остаётся, степени вычитаются -8-(-12)=-8+12= 4
ответ: 2^4=16
Б) 9^2*3^-10
——————
27^-3
Приводим к одинаковому основанию 3
9 это 3 в квадрате, там ещё и 2 степень а значит 3^4
3^-10 не трогаем
27^-3 это (3^3)-3= 3^-9
3^4*3^-10
—————
3^-9
В знаменателе степени прибавляем 4+(-10)= -6
3^-6
–—— = 3^3 ( степени вычитаешь)
3^-9
3 в кубе это 27. ответ 27
Номер5:
За скобки выносим б^3
В скобке остаётся b^3 (1-b^2)
В фотке формулы обвела, которыми пользовалась