Строим прямую у=х-1 Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет Проверим, какой из них принадлежит (0;0) 0-0≤1 - верно. Значит условию удовлетворяет та часть, которой принадлежит точка (0;0) См. рис. 1
2у²=1 у²=1/2 у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы. Проверяем точку (0;0) 1-2·0<0 - неверно. Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0). См. рис.2
Системе x-y<=1; 1-2y²<0 удовлетворяет пересечение двух областей ( см. рис. 3)
Укажем линейные функции, графики которых параллельны, и графики которых пересекаются.
Если мы рассматриваем прямые, располагающиеся в одной плоскости, то они могут пересекаться, совпадать, быть параллельными.
Уравнение прямой имеет следующий вид:
y = k * x + b, где k и b - числовые коэффициенты.
Две прямые будут параллельными, если их угловые коэффициенты k будут равны. При этом значения коэффициентов b значения не имеют.
y = 2 * x и y = 2 * x + 10 - параллельные прямые.
y = 2 * x и y = 10 - x - пересекающиеся прямые.
Вроде так