задание 9
пусть ширина х,тогда длина х+0,25х составим уравнение
х+х+0,25х=54:2
2,25х= 27
х=27:2,25
х=12 см ширина
12+12*0,25=12+3=15 см длина
12*15= 180 кв см площадь
задание 10
1)сумма восьми чисел 5,2*8= 41,6
пусть искомое число х,составим уравнение
41,6+х=5,7*9
41,6+х=51,3
х=51,3-41,6
х= 9,7 искомое число
задание 5 ответ: х= - 0,5
задание 4 ответ: вариант 2
задание 8
/4х/=5,6
решение разбивается на отдельные случаи
случай 1
4х=5.6
х=5,6:4
х= 1,4
случай 2
- 4х=5,6
х=5,6:(-4)
х= - 1,4
ответ х=1,4;х=-1,4
задание 9
пусть ширина х,тогда длина х+0,25х составим уравнение
х+х+0,25х=54:2
2,25х= 27
х=27:2,25
х=12 см ширина
12+12*0,25=12+3=15 см длина
12*15= 180 кв см площадь
задание 10
1)сумма восьми чисел 5,2*8= 41,6
пусть искомое число х,составим уравнение
41,6+х=5,7*9
41,6+х=51,3
х=51,3-41,6
х= 9,7 искомое число
задание 5 ответ: х= - 0,5
задание 4 ответ: вариант 2
задание 8
/4х/=5,6
решение разбивается на отдельные случаи
случай 1
4х=5.6
х=5,6:4
х= 1,4
случай 2
- 4х=5,6
х=5,6:(-4)
х= - 1,4
ответ х=1,4;х=-1,4
ответ: функция z имеет минимум, равный 2, в точке М(1;1).
Объяснение:
Пишем уравнение связи в виде g(x,y)=x+y-2=0 и составляем функцию Лагранжа L=z+a*g=1/x+1/y+a*(x+y-2), где a - множитель Лагранжа. Находим частные производные dL/dx и dL/dy: dL/dx=-1/x²+a, dL/dy=-1/y²*a и составляем систему из трёх уравнений:
-1/x²+a=0
-1/y²+a=0
a*(x+y-2)=0
Решая её, находим a=1, x=y=1. Таким образом, найдена единственная стационарная точка M(1;1). Теперь проверим, выполняется ли достаточное условие экстремума. Для этого находим вторые частные производные: d²L/dx²=2/x³; d²L/dxdy=0, d²L/dy²=2/y³ Вычисляем значение найденных производных в точке М: A=d²L/dx²(M)=2, B=d²L/dxdy(M)=0, C=d²L/dy²(M)=2 и составляем дифференциал 2-го порядка: d²L=A*(dx)²+2*B*dx*dy+C*(dy)²=2*dx²+2*dy²>0, поэтому функция z в точке М имеет минимум, равный zmin=1/1+1/1=2.