task/29646731 Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?
y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4 ⇒ min y = - 1/4 , при x = 3 /2 ∈ [-5;5]
График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика
Функция убывает , если x ∈ [-5 ; 3/2] , возрастает , если x ∈ [ 3/2 ; 5] .
y( -5) =(-5)² - 3*(-5) +2 = 42. y( 5) =5² - 3*5 +2 = 12 .
ответ: 42.
ИЛИ
* Непрерывная на отрезке функция достигает максимума и минимума * *
y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2
y ' " - " " +"
1,5 (критическая точка x=1,5 →точка минимума)
y ↓ min ↑
y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .
у min = y(1,5) = - 0,25 ; у max = y(-5) = 42.
Пишите задание понятно и исчерпывающе!
f(x)=корень(x^2-2x)
f'(x)=(корень(x^2-2x))'=1/(2*корень(x^2-2x)) *(x^2-2x)'=(2x-2)/(2*корень(x^2-2x))=
=(x-1)/корень(x^2-2x)
f'(3)=(3-1)/корень(3^2-3)=2/корень(6)=2*корень(6)/6=корень(6)/6
f(x)=корень(x^2+1)
f'(x)=(корень(x^2+1))'=1/(2*корень(x^2+1))' *(x^2+1)'=2x / (2*корень(x^2+1))=
=x/корень(x^2+1)
f'(2)=2/корень(2^2+1)=2/корень(5)=2/5*корень(5)
f(x)=(x^2+1)*под корнем x^2+1=(x^2+1)^(3/2)
f'(x)=( (x^2+1)^(3/2) )'=3/2 *(x^2+1)^(3/2-1) * (x^2+1)'=3/2 *корень(x^2+1)* 2x=
=3x*корень(x^2+1)
f'(корень(3))=3*корень(3) *корень((корень(3))^2+1)=
=3*корень(3)*2=6*корень(3)
Подробнее - на -