1. Преобразуем уравнение:
4х^2 + 12х + 12/х + 4/х^2 = 47;
4(х^2 + 2 + 1/x^2) - 8 + 12(х + 1/х) - 47 = 0;
4(х + 1/x)^2 + 12(х + 1/х) - 55 = 0.
2. Замена:
х + 1/x = t;
4t^2 + 12t - 55 = 0;
D/4 = 6^2 + 4 * 55 = 36 + 220 = 256 = 16^2;
t = (-6 ± 16)/4;
t1 = (-6 - 16)/4 = -22/4 = -11/2;
t2 = (-6 + 16)/4 = 10/4 = 5/2.
3. Обратная замена:
х + 1/x = t;
х^2 + 1 = tx;
х^2 - tx + 1 = 0;
1) t = -11/2;
х^2 + 11/2 * x + 1 = 0;
2х^2 + 11x + 2 = 0;
D = 11^2 - 4 * 2 * 2 = 121 - 16 = 105;
x1/2 = (-11 ± √105)/4;
2) t = 5/2;
х^2 - 5/2 * x + 1 = 0;
2х^2 - 5x + 2 = 0;
D = 5^2 - 4 * 2 * 2 = 25 - 16 = 9;
x = (5 ± √9)/4 = (5 ± 3)/4;
x3 = (5 - 3)/4 = 2/4 = 1/2;
x4 = (5 + 3)/4 = 8/4 = 2.
ответ: (-11 ± √105)/4; 1/2; 2.
В решении.
Объяснение:
Постройте графики функций y= -3/x и y=x+4 Укажите координаты точек пересечения этих графиков.
График y= -3/x гипербола. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -5 -4 -3 -2 -1,5 -1 -0,5 1 1,5 2 3 4 5
у 0,6 0,75 1 1,5 2 3 6 -3 -2 -1,5 -1 -0,75 -0,6
y=x+4. Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 3 4 5
Координаты точек пересечения гиперболы и прямой (-1; 3) (-3; 1).
Точки пересечения находятся во второй четверти.