М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
KaDet1778
KaDet1778
28.10.2020 03:57 •  Алгебра

НУЖНО! С вираз: (y+2)(y-2) + (y-4)^2

👇
Ответ:
Marg06
Marg06
28.10.2020

(y + 2)(y - 2) + (y - 4)² = y² - 4 + y² - 8y + 16 = 2y² - 8y + 12

4,5(58 оценок)
Ответ:
julliastripa
julliastripa
28.10.2020

Объяснение:

(y+2)(y-2) + (y-4)^2

y^2-4+y^2-8y+16=2y^2-8y+12=2(y^2-4y+6)

4,4(70 оценок)
Открыть все ответы
Ответ:
romapigula1357
romapigula1357
28.10.2020

сначала применим к правой части формулу приведения:

 

cos 2x = -cos x

cos 2x  + cos x = 0

2cos²x - 1 + cos x = 0

Пусть cos x = t, причём |t| ≤ 1

2t² + t - 1 = 0

D = 1 + 8 = 9

t1 = (-1 - 3) / 4 = -1

t2 = (-1 + 3) / 4 = 1/2

 

cos x = -1                              или                                        cos x = 1/2

x = π + 2πn,n∈Z                                                                 x = ±arccos 1/2 + 2πk,k∈Z

                                                                                              x = ±π/3 + 2πk,k∈Z

Данные решения могут совпадать, что разумеется нам не надо, поскольку тогда придётся писать что-то одно. В данном случае не совпадают, и это хорошо видно по числовой окружности, нанеся на неё точки π/3 и π видно, что решения никогда не наложатся одно на другое.

Поэтому, произведём отбор корней по обоим формулам.

Отберём корни из первого решения. Для этого впихнём данное решение в указанный промежуток и решим двойное неравенство относительно n:

       3π/2  ≤ π + 2πn ≤ 5π/2

         π/2  ≤  2πn ≤ 3π/2

      Разделим на 2п:

                      1/4 ≤n≤ 3/4

Видим, что никаких целых n нет на данном интервале. Значит, данное решение мы отбрасываем.

Осталось второе решение.

Также вобьём его в указанный промежуток и решим полученное двойное неравенство относительно k, но разобъём данное объединённое решение ещё на два и провернём с каждым подобную операцию:

 

                           3π/2  ≤  π/3 + 2πk ≤ 5π/2

                          7π/6  ≤  2πk ≤ 13π/6

                        Разделим данное неравенство на 2π:

                             7/12 ≤ k ≤ 13/12

           Замечаем, что на данном промежутке единственное целое значение k - это k = 1. Подставив его в общую формулу вместо k, получим тот самый корень, который нам требуется:

k = 1   x = π/3 + 2π = 7π/3 - это нужный отобранный корень

 

Теперь проверим. есть ли ещё такие корни.

Для этого впихнём в данный промежуток второй вариант решения ±π/3 + 2πk, это -π/3 + 2πk:

                                       

                                       3π/2  ≤ -π/3 + 2πk ≤ 5π/2

                                        11π/6 ≤ 2πk ≤ 17π/6

                                         11/12 ≤ k ≤ 17/12

По неравенству видно, что есть опять же только единственное значение k - это 1. Подставив его в эту формулу получим наш второй корень:

k = 1             x = -π/3 + 2π = 5π/3

 

Таким образом, ответ пишем таким образом:

 

а)π + 2πn,n∈Z; ±π/3 + 2πk,k∈Z

б)7π/3; 5π/3

Под буквой б - наши отобранные корни на заданном промежутке. Задача выполнена.

 

 

 

 

 

 

 

4,7(1 оценок)
Ответ:
steep6
steep6
28.10.2020
Многое в поставленной вами задачи зависит от того Какие значения может 
принимать Х изменяясь в своей области определения . Кроме того важно 
сразу отметить что если вы ищете аналитическую закономерность (виде 
некоторой формулы) то её может и не быть. 

Если множество значений Х дискретно то можно использовать 
любой из стандартных методов интерполяции : линейную, дробно- 
линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д 

Приведу пример нахождения интерполяционного многочлена Тейлора 
по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; 
многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- 
подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 
а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: 
P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; 
P(X2)=1+A1*1+A2*1*1=2 
P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк 
Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 
Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости 
между X и Y. Естественно этот результат не единственен. 
Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов» 
4,8(24 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ