Система событий:
A-выигрыш, не A-проигрыш, B-ясный день, не B-дождливый день.
P(AB)=P(A|B)*P(B)-формула условной вероятности.
1. Проигрыш, при условии ясный день:
P((не A)B)=P((не A)|B)*P(B)=0,2*0,7=0,14;
2. Выигрыш, при условии ясный день:
P(AB)=P(A|B)*P(B)=0,8*0,7=0,56;
3. Проигрыш, при условии дождливый день:
P((не A)(не B))=P((не A)|(не B))*P(не B)=0,7*0,3=0,21;
4. Выигрыш, при условии дождливый день:
P(A(не B))=P(A|(не B))*P(не B)=0,3*0,3=0,09;
0,14+0,56+0,21+0,09=1-проверяем полную вероятность событий.
а) P(не A)=P((не A)B)+P((не A)(не B))-проигрыш при любой погоде, т.е. произойдет 1 или 3: 0,14+0,21=0,35;
б) P(A)=P(AB)+P(A(не B))-выигрыш при любой погоде, т.е. произойдет 2 или 4: 0,56+0,09=0,65;
P(A (не B))=P(A|(не B))*P(не B)=P((не B)|A)*P(A);
Выигрыш, при условии дождливый день равносильно дождливый день при условии выигрыша.
Тогда дождливый день, при условии выигрыша:
P((не B)|A)=P(A(не B))/P(A)=0,09/0,65=9/65.
Публикую только для разъяснения и критики.
а) решил без проблем; б) пришлось разбираться.
Дано: bn – геометрическая прогрессия;
b1 + b2 = 30, b2 + b3 = 20;
Найти: b1; b2; b3 - ?
Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),
где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии этой формулы выразим второй и третий члены заданной прогрессии:
b2 = b1 * q^(2 – 1) = b1 * q;
b3 = b1 * q^(3 – 1) = b1 * q^2.
Т.о. имеем:
b1 + b2 = 30; и b2 + b3 = 20;
b1 + b1 * q = 30; b1 * q + b1 * q^2 = 20;
b1 (1 + q) = 30; b1 (q + q^2) = 20;
b1 = 30 / (1 + q). b1 = 20 / (q + q^2).
Т.е. 30 / (1 + q) = 20 / (q + q^2);
30 * (q + q^2) = 20 * (1 + q);
30q + 30q^2 = 20 + 20q;
30q^2 + 10q – 20 = 0;
D = (10)^2 – 4 * 30 * (-20) = 2500; sqrt(D) = sqrt (2500) = 50;
q1 = (-10 + 50) / 60 = 2/3;
q2 = (-10 - 50) / 60 = -1.
Подставим оба полученных значений q выражение для нахождения b1:
b1 = 30 / (1 + 2/3) = 30 / (5/3) = 90/5 = 18;
b1 = 30 / (1 + (-1)) = 30 / 0 – смысла не имеет, следовательно, q = 2/3.
b2 = b1 * q = 18 * 2/3 = 12;
b3 = b1 * q^2 = 18 * 2/3^2 = 8.
ответ: b1 = 18; b2 = 12; b3 =8.
Объяснение: