М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
дангалах
дангалах
20.10.2022 14:34 •  Алгебра

Исследовать функцию x^3-11x^2+24x+36=0 и график.

👇
Ответ:
krisdenya2005
krisdenya2005
20.10.2022

Исследовать функцию и построить график.


Исследовать функцию x^3-11x^2+24x+36=0 и график.
4,8(57 оценок)
Ответ:
vikulovatanya
vikulovatanya
20.10.2022

Объяснение:

ответ на фото.............


Исследовать функцию x^3-11x^2+24x+36=0 и график.
Исследовать функцию x^3-11x^2+24x+36=0 и график.
4,6(81 оценок)
Открыть все ответы
Ответ:
maximstrekalovs
maximstrekalovs
20.10.2022

Начнем с ОДЗ:

3x+6 > 0 => x > -2

2x - 4 > 0 => x > 2. Общее ОДЗ: x>3

2x - 6 > 0 => x > 3

Представим 2, как log1/2 (1/4), чтобы было удобнее считать. Далее применяем свойства суммы и разности логарифмов, и неравенство сводится к обычному дробно-рациональному. И не забываем поменять знак на противоположный, потому что основание логарифма меньше 1.

log1/2 ( (3x+6)/(2x-4) ) < log1/2 ( 1/4*(2x-6) )

log1/2 t - убывающая функция, а значит знак меняем.

(3x+6)/(2x-4) > x/2 - 6/4

(3x + 6 -x² + 2x + 3x -6) / 2(x-2) > 0

x(8 - x) / 2(x-2) > 0

Решение этого неравенства будет x ∈ ( - ∞; 0) ∪ ( 2; 8)

Из ОДЗ следует, что х>3, то ответ будет: x ∈ ( 3; 8)

ответ: (3; 8)

4,8(27 оценок)
Ответ:
skillvip
skillvip
20.10.2022
\left \{ {{2x \leq 6} \atop { x^{2} +7x+60}} \right.
\left \{ {{x \leq 3} \atop {(x+6)(x+1)0}} \right.
Решим второе неравенство
_____-6_________-1_______
     +           -               +
(-\infty;-6)  и   (-1;+\infty)
Найдем пересечение решений
ответ: (-\infty;-6)    и    (-1;3]
2.
x_{1}=-2
x_{2} =-1
( я нашла корни по теореме Виета)
_____-2______-1________
+            -               +
ответ: (-\infty;-2)          и   (-1;+\infty)
\frac{ x^{2} -2x-8}{16- x^{2} } \geq 0
\frac{ x^{2} -2x-8}{ x^{2} -16} \leq 0
\left \{ {{ (x^{2}-2x-8)( x^{2} -16) \leq 0 } \atop { x^{2} -16 \neq 0}} \right.
Решим первое неравенство, найдем корни, приравняв нулю.
x_{1} =4
x_{2}=-2
x_{3}=-4
Разложим на множители 1 неравенство
(x+2)(x-4)(x-4)(x+4) \leq 0
(x+2)(x+4)( x-4)^{2} \leq 0
Отметим точки на числовой прямой, причем -2-закрашенная, а 4 и - 4 выколотые( исключены вторым неравенством)
______-4______-2_____4________
    +           -          +         +
Знаки ставятся справа налево начиная с +. Тк (х-4)^2, то на следующем промежутке знак не поменяется, далее чередуются -, +
ООФ (-4;-2] 
4,6(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ