у = х + х³, y(-x) = (-x) + (-x)³ = -x - x³ = - (x + x³) - ф-ция нечетноя;
у = х² - 2, y(-x) = (-x)² - 2 = x² - 2 - четноя;
х^3 (-х)³ х³
у= ; у(-х) = = - - нечетная
х²+1 (-х)² + 1 х² + 1
1 1 1 1
у = х + ---, у(-х) = -х + = -х - = - (х + ) - нечетная
х -х х х
у = √1 - х²; у(-х ) = √1 - (-х)² = √1 - х² - четная
у = ³√х², у(-х) = ∛(-х)² = ∛х² - четная
2) на формулы сокращенного умножения и вынесение общего множителя
3) на формулы сокращенного умножения
4) решение квадратных уравнений и вынесение общего множжителя
5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.