М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
хрустально
хрустально
21.01.2020 19:36 •  Алгебра

РЕШИТЕ НЕРАВЕНСТВО
Номер 2


РЕШИТЕ НЕРАВЕНСТВО Номер 2

👇
Ответ:
ksushadream1
ksushadream1
21.01.2020
Попомнили не надо было на самом
4,6(25 оценок)
Открыть все ответы
Ответ:
sungatulin22
sungatulin22
21.01.2020
|x-1|>|x+2|-3
|x-1|-|x+2|>-3
Раскроем модули.
Приравняем каждое  подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак:
x-1=0        x+2=0
x=1            x=-2
Нанесем эти значения Х на числовую прямую:

(-2)(1)

Мы получили три промежутка.Найдем знаки  каждого подмодульного выражения на каждом промежутке:
      
           (-2)(1)
x-1                -                          -                          +
x+2                -                          +                        +

Раскроем модули на каждом промежутке:
1)x<-2
На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком:
-x+1+x+2>-3
3>-3 - неравенство верное при любых Х на промежутке x<-2

2) -2<=x<1
На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком:
-x+1-x-2>-3
-2x-1>-3
-2x>1-3
-2x>-2
x<1
С учетом промежутка -2<=x<1 получаем x e [-2;1)

3)x>=1
На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака:
x-1-x-2>-3
-3>-3
Неравенство не имеет решений на этом промежутке
Соединим решения 1 и 2 промежутков и получим такой ответ:
x e(-беск.,1)
4,5(47 оценок)
Ответ:
Ovaliza
Ovaliza
21.01.2020

ответ:

данные решаются по одному алгоритму.

продемонстрируем на примере первой функции (вторая исследуется аналогично, только функция не определена в точке х=4):

1)

функция не определена в точке x = - 4.

поэтому:

x ∈ (-∞; -4) ∪ (-4; +∞)

2)

находим производную функции:

y'(x) = [(x²+3x)'·(x+4)-(x²+3x)·(x+4)'] / (x+4)²

y'(x) = [(2x+3)·(x+4)-(x²+3x)·1] / (x+4)²

y'(x) = (x²+8x+12) / (x+4)²

3)

приравняем производную к нулю:

x²+8x+12 = 0

x₁ = - 6

x₂ = -2

4)

на интервале x∈(-∞; -6)

y'(x) > 0; функция монотонно возрастает.

на интервале x∈(-6; -4)

y'(x) < 0; функция монотонно убывает.

в точке x = -6 - максимум функции.

y(-6) = - 9

5)

на интервале x∈( -4; -2)

y'(x) < 0; функция монотонно убывает .

на интервале x∈(-2; +∞)

y'(x) > 0; функция монотонно возрастает.

в точке x = - 2 - минимум функции.

y(-2) = -1

6)

для контроля строим график

объяснение:

4,8(20 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ