1) sin 3x - sin 5x > 0 По формуле разности синусов
2sin(-x)*cos(4x) > 0 -2sin x*cos(4x) > 0 Делим на -2, при этом знак неравенства меняется. sin x*cos(4x) < 0 Два варианта. Множители должны иметь разные знаки. a) { sin x < 0 { cos(4x) > 0 Решаем неравенства { x ∈ (-pi+2pi*k; 2pi*k) { 4x ∈ (-pi/2+2pi*k; pi/2+2pi*k); x ∈ (-pi/8+pi/2*k; pi/8+pi/2*k) Решение 2 неравенства я показал на рисунке. Это жирные дуги. Пересечение неравенств - это нижняя часть круга, где sin x < 0 x ∈ (-pi+2pi*k; -7pi/8+2pi*k) U (-5pi/8+2pi*k; -3pi/8+2pi*k) U (-pi/8+2pi*k; 2pi*k)
б) { sin x > 0 { cos(4x) < 0 Решаем неравенства { x ∈ (2pi*k; pi+2pi*k) { 4x ∈ (pi/2+2pi*k; 3pi/2+2pi*k); x ∈ (pi/8+pi/2*k; 3pi/8+pi/2*k) Решение 2 неравенства - это нежирные дуги на том же рисунке. Пересечение неравенств - это верхняя часть круга, где sin x > 0 x ∈ (pi/8+2pi*k; 3pi/8+2pi*k) U (5pi/8+2pi*k; 7pi/8+2pi*k)
Скорее всего, в этом условии есть ошибка. Согласно школьной программе степенная функция с дробным показателем определена только для неотрицательных х. (см., например, учебник Мордкович А.Г., "Алгебра 10-11 и начала математического анализа. Часть 1" 14 издание, Москва 2013 г., стр. 220-221.)
Но и в текущей постановке эту задачу можно считать корректной и решить, хотя это и не так интересно. Поскольку в условии не указана конкретная точка, через которую должна проходить касательная (а сказано только, что у нее абсцисса должна быть -1), возьмем любую касательную к графику функции f(x) и на этой касательной возьмем точку с абсциссой x0=-1. f'(x)=(4/5)x^(-1/5). При х=1, f'(1)=4/5, f(1)=1. Значит уравнение касательной y=4(x-1)/5+1, т.е. y=4x/5+1/5. Очевидно, точка М(-1; -3/5) лежит на касательной. Итак, прямая c уравнением y=4x/5+1/5 является касательной к графику функции f(x)=x^(4/5) и проходит через точку M(-1;-3/5) c абсциссой -1 (хотя сама точка М не лежит на графике). Понятно, что таких точек можно найти сколько угодно, т.к. можно брать любые касательные. В такой постановке задача, конечно неинтересна. Собственно поэтому я и думаю, что в условии ошибка.
P.S. На всякий случай присоединяю скрин из учебника, в качестве подтверждения моих слов про область определения степенной функции с дробным показателем. Обратите внимание на упражнение г) и на замечание ниже.
По формуле разности синусов
2sin(-x)*cos(4x) > 0
-2sin x*cos(4x) > 0
Делим на -2, при этом знак неравенства меняется.
sin x*cos(4x) < 0
Два варианта. Множители должны иметь разные знаки.
a)
{ sin x < 0
{ cos(4x) > 0
Решаем неравенства
{ x ∈ (-pi+2pi*k; 2pi*k)
{ 4x ∈ (-pi/2+2pi*k; pi/2+2pi*k); x ∈ (-pi/8+pi/2*k; pi/8+pi/2*k)
Решение 2 неравенства я показал на рисунке. Это жирные дуги.
Пересечение неравенств - это нижняя часть круга, где sin x < 0
x ∈ (-pi+2pi*k; -7pi/8+2pi*k) U (-5pi/8+2pi*k; -3pi/8+2pi*k) U (-pi/8+2pi*k; 2pi*k)
б)
{ sin x > 0
{ cos(4x) < 0
Решаем неравенства
{ x ∈ (2pi*k; pi+2pi*k)
{ 4x ∈ (pi/2+2pi*k; 3pi/2+2pi*k); x ∈ (pi/8+pi/2*k; 3pi/8+pi/2*k)
Решение 2 неравенства - это нежирные дуги на том же рисунке.
Пересечение неравенств - это верхняя часть круга, где sin x > 0
x ∈ (pi/8+2pi*k; 3pi/8+2pi*k) U (5pi/8+2pi*k; 7pi/8+2pi*k)
2) Про arcsin x - а где неравенство?