М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gambab
gambab
25.03.2022 14:34 •  Алгебра

(а+4)(а-4) предоставьте в виде стандартного многочлена

👇
Ответ:
fhftufdy12233p01cf0
fhftufdy12233p01cf0
25.03.2022

(a+4)(a-4)=a^2-16

4,4(69 оценок)
Ответ:
VladSuperMozg
VladSuperMozg
25.03.2022

Объяснение:

(a+4)(a-4)=a^{2}-4a+4a-16=a^{2}-16

4,5(2 оценок)
Открыть все ответы
Ответ:
gladkova2002d
gladkova2002d
25.03.2022
Обозначим всю работу за 1
Пусть первая выполняет за час х , вторая выполняет за час  у.
Вместе они за час выполняют (х+у).
За четыре часа  4·(х+у) Что и равно все работе,т. е 1
4(х+у)=1
Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов.
 \frac{1}{2x} + \frac{1}{2y}=9
Решаем систему
\left \{ {{x+y= \frac{1}{4} } \atop { \frac{1}{2x}+ \frac{1}{2y}=9 }} \right. \\ \\ \left \{ {{y= \frac{1}{4}-x } \atop { \frac{1}{2x}+ \frac{1}{2\cdot ( \frac{1}{4}-x )}=9 }} \right.

\left \{ {{y= \frac{1}{4}-x } \atop { \frac{ \frac{1}{4}-x+x }{2x\cdot ( \frac{1}{4}-x )}=9 }} \right. \\ \\ \left \{ {{y= \frac{1}{4}-x } \atop { \frac{ 1 }{8x\cdot ( \frac{1}{4}-x )}=9 }} \right. \\ \\ \left \{ {{y= \frac{1}{4}-x } \atop { 72x^2-18x+1=0 }} \right.

\left \{ {{y_1= \frac{1}{4}- \frac{1}{6}= \frac{1}{12} } \atop { x_1= \frac{1}{6} }} \right. \\ \\ \left \{ {{y_2= \frac{1}{4}- \frac{1}{24}= \frac{5}{24} } \atop { x_2= \frac{1}{24} }} \right. \

Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же  5/24 больше чем 1/24)

Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов.
Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
4,6(54 оценок)
Ответ:
mironova0
mironova0
25.03.2022

y=\frac{x^-8+x^2-x-2}{x^2-x-2} =\frac{x^3}{x^2-x-2} +1

1. Область определения:

x^2-x-2\neq 0\\D=1-4(-2)=3^2\\x\neq \frac{-(-1)б3}{2} =0.5б1.5

x∈(-∞;-1)∪(-1;2)∪(2;+∞)

2. Найдём точки пересечения с осями:

y=\frac{x^3+x^2-x-2}{x^2-x-2}=0\\y(0)=-2/-2=1\\x^3+x^2-x-2=0\\ax^3+bx^2+cx+d=0\\a=1;b=1;c=-1;d=-2\\p=\frac{3ac-b^2}{3a^2} =\frac{-3-1}{3} =-4/3\\q=\frac{2b^3-9abc+27a^2d}{27a^3} =\frac{2+9-27*2}{27} =-43/27\\x=\sqrt[3]{\frac{-q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}} +\sqrt[3]{\frac{-q}{2}-\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}} -\frac{b}{3a} =\\\sqrt[3]{\frac{43}{2*27}+\sqrt{\frac{43^2}{27^2*4}+\frac{-64}{27*27}}} +\sqrt[3]{\frac{43}{2*27}-\sqrt{\frac{43^2}{27^2*4}+\frac{-64}{27*27}}} -\frac{1}{3}=

=\sqrt[3]{\frac{43}{2*27}+\frac{3\sqrt{3*59}}{27*2} }+\sqrt[3]{\frac{43}{2*27}-\frac{3\sqrt{3*59}}{27*2}}-\frac{1}{3}=\\\frac{\sqrt[3]{2(43+3*\sqrt{3*59})}+\sqrt[3]{2(43-3*\sqrt{3*59})}-2}{6}=1.206...

3. Исследование с первой производной:

y=\frac{x^3}{x^2-x-2} +1\\y'=\frac{3x^2(x^2-x-2)-x^3(2x-1)}{(x^2-x-2)^2}=\\ y'=\frac{x^2(3x^2-3x-6-2x^2+x)}{(x^2-x-2)^2}=\\ y'=\frac{x^2(x^2-2x-6)}{(x^2-x-2)^2}=\\D=4+24=2^2*7\\ y'=\frac{x^2(x-(1+\sqrt{7} ))(x-(1-\sqrt{7}))}{((x+1)(x-2))^2}

Смотри внизу.

y(1-\sqrt{7} )=\frac{(1-\sqrt{7} )^3}{(1-\sqrt{7})^2-1+\sqrt{7}-2}+1=\\\frac{1-3\sqrt{7}+3*7-7\sqrt{7} }{(1+7-2\sqrt{7}+\sqrt{7}-3}+1\\\frac{22-10\sqrt{7}+5-\sqrt{7} }{5-\sqrt{7}}=\\\frac{(27-11\sqrt{7})(5+\sqrt{7} )}{25-7} =\\\frac{135-28\sqrt{7}-77}{18} =\\\frac{29-14\sqrt{7} }{9}

y(1+\sqrt{7} )=\frac{(1+\sqrt{7})^3}{(1+\sqrt{7})^2-1-\sqrt{7}-2} +1=\\\frac{1+3\sqrt{7}+3*7+7\sqrt{7} }{1+7+2\sqrt{7}-3-\sqrt{7} }+1=\\\frac{22+10\sqrt{7}+5+\sqrt{7} }{5+\sqrt{7}}=\\\frac{(27+11\sqrt{7})(5-\sqrt{7})}{25-7}=\\\frac{135+28\sqrt{7}-77}{18}=\\\frac{29+14\sqrt{7}}{9}

4. Исследование с второй производной:

y'=\frac{x^2(x^2-2x-6)}{(x^2-x-2)^2}\\f(x)=x^2(x^2-2x-6)\\f'(x)=2x(x^2-2x-6)+x^2(2x-2)=\\4x^3-6x^2-12x=2x(2x^2-3x-6)\\y''=\frac{2x(2x^2-3x-6)(x^2-x-2)^2-x^2(x^2-2x-6)2(x^2-x-2)(2x-1)}{(x^2-x-2)^4}\\ y''=\frac{2x(x^2-x-2)((2x^2-3x-6)(x^2-x-2)-(x^3-2x^2-6x)(2x-1))}{(x^2-x-2)^4}

2x(x^2-x-2)((2x^2-3x-6)(x^2-x-2)-(x^3-2x^2-6x)(2x-1))=\\2x(x^2-x-2)(2x^4-2x^3-4x^2-3x^3+3x^2+6x-6x^2+6x+12-(2x^4-x^3-4x^3+2x^2-12x^2+6x)=2x(x^2-x-2)(3x^2+6x+12)\\y''=\frac{6x(x^2+2x+4)}{((x+1)(x-2))^3}

Выражение в скобках в числителе всегда положительное и не равняется нулю, смотри вниз.

y(0)=1

5. Уравнение асимптот:  

Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:

\lim_{x\to\infty}{(kx+b-f(x))}

Находим коэффициент k:

k=\lim_{x\to\infty}{\frac{f(x)}{x}}\\k=\lim_{x\to\infty}{\frac{\frac{x^{3}+x^{2}-x-2}{x^{2}-x-2}}{x}}=\lim_{x\to\infty}{\frac{x^{3}+x^{2}-x-2}{x^{3}-x^{2}-2x}}=1

Находим коэффициент b:

b=\lim_{x\to\infty}{f(x)-k*x}\\b=\lim_{x\to\infty}{\frac{x^{3}+x^{2}-x-2}{x^{2}-x-2}-x}=\lim_{x\to\infty }{\frac{2*x^{2}+x-2}{x^{2}-x-2}}=2

Получаем уравнение наклонной асимптоты: у=x+2  

Найдем вертикальные асимптоты. Для этого определим точки разрыва: x_1=-1;x_2=2

Находим переделы в точке x=-1

\lim_{x\to-1-0}{\frac{x^{3}+x^{2}-x-2}{x^{2}-x-2}}=-\infty\\\lim_{x\to-1+0}{\frac{x^{3}+x^{2}-x-2}{x^{2}-x-2}} =\infty

Это точка разрыва II рода и является вертикальной асимптотой.  

Находим переделы в точке x=2

\lim_{x\to2-0}{\frac{x^{3}+x^{2}-x-2}{x^{2}-x-2}}=-\infty\\\lim_{x\to2+0}{\frac{x^{3}+x^{2}-x-2}{x^{2}-x-2}}=\infty

Это точка разрыва II рода и является вертикальной асимптотой.

Опираясь на эти записи можно построить график данной функции.


Решите номер 5 .есть вложение. 25 б
4,5(82 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ