М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katyatrizna
katyatrizna
05.01.2020 02:54 •  Алгебра

Найдите наименьшее значение функции y=3 sin^2x+2cos^2x

👇
Ответ:
vladimirdement
vladimirdement
05.01.2020

точно не знаю, но вроде правильно


Найдите наименьшее значение функции y=3 sin^2x+2cos^2x
4,6(97 оценок)
Ответ:
Oven463
Oven463
05.01.2020

Вроде так, хотя может быть и нет


Найдите наименьшее значение функции y=3 sin^2x+2cos^2x
4,7(6 оценок)
Открыть все ответы
Ответ:
qvetikp0cumc
qvetikp0cumc
05.01.2020

\dfrac{a^4}{24} +\dfrac{a^3}{4} +\dfrac{11a^2}{24} +\dfrac{a}{4},\ a\in\mathbb{Z}

Преобразуем выражение:

\dfrac{a^4}{24} +\dfrac{a^3}{4} +\dfrac{11a^2}{24} +\dfrac{a}{4} =\dfrac{a^4}{24} +\dfrac{6a^3}{24} +\dfrac{11a^2}{24} +\dfrac{6a}{24} =\dfrac{a^4+6a^3+11a^2+6a}{24}

Рассмотрим и преобразуем числитель:

a^4+6a^3+11a^2+6a=a(a^3+6a^2+11a+6)=

=a(a^3+a^2+5a^2+5a+6a+6)=a(a^2(a+1)+5a(a+1)+6(a+1))=

=a(a+1)(a^2+5a+6)=a(a+1)(a^2+2a+3a+6)=

=a(a+1)(a(a+2)+3(a+2))=a(a+1)(a+2)(a+3)

Получилось произведение четырех подряд идущих целых чисел.

Из четырех подряд идущих целых чисел гарантированно найдется хотя бы одно, кратное 3. Также, из четырех подряд идущих целых чисел найдется два четных числа, одно из которых не только четное, но и кратно 4.

Таким образом, в произведении гарантированно есть множители 3, 2 и 4. Тогда, такое произведение делится на 3\cdot2\cdot4=24.

Запишем:

a(a+1)(a+2)(a+3)\,\vdots\,24

\Rightarrow(a^4+6a^3+11a^2+6a)\,\vdots\,24

В исходной дроби такое выражение как раз делится на 24. Как выясняется, это выражение кратно 24. Значит, результат деления на 24 будет целым числом:

\dfrac{a^4+6a^3+11a^2+6a}{24}\in \mathbb{Z}

\Rightarrow\left(\dfrac{a^4}{24} +\dfrac{a^3}{4} +\dfrac{11a^2}{24} +\dfrac{a}{4} \right)\in\mathbb{Z}

Доказано.

4,8(72 оценок)
Ответ:
кирилл2064
кирилл2064
05.01.2020
А) (1-3x)(x+1)=(x-1)(x+1)
x+1-3x²-3x=x²-1
x+1-3x²-3x-x²+1=0
-4x²-2x+2=0 :(-1)
4x²+2x-2=0
D=4-4*4*(-2)=4+32=36
x= (-2+6)/2*4=4/8=1/2
x= (-2-6)/8= -8/8= -1
ответ: при х=1/2; х= -1

б)x²-3x-1/2=x-1
х²-3x-1/2-х+1=0
х²-4х+0,5=0. *2
2x²-8x+1=0
D=64-4*2=64-8=56
x= (8+√56)/4=(8+2√14)/4=2(4+√14)/4=
=(4+√14)/2

Пусть х-; 1 натуральное число, a (x-6) ;-2 натуральное число, значит
х(х-6)=27
х²-6х-27=0
D=36-4*(-27)=36+108=144
x= (6+12)/2=18/2=9
x=(6-12)/2= -6/2= -3(исключаем, т.к число не натуральное
9-6=3
ответ:9;3

Пусть х см-длина, а (х-6)-ширина, значит
х(х-6)=40
х²-6х-40=0
D=36-4*(-40)=196
x= (6+14)/2=20/2=10
x=(6-14)/2= -8/2= -4(исключаем, т.к ширина не может быть<0)
10-6=4см-ширина
Р=2(10+4)=28см
ответ:28см
4,8(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ