6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
При |x|≥2 x^2-4≥0. Тогда при y≥-x^2 y+x^2=x^2-4, откуда y=-4. -4≥-x^2 ⇒ x^2≥4. Справедливо для всех x, для которых |x|≥2 При y<-x^2 -y-x^2=x^2-4 y=4-2x^2. Должно выполняться 4-2x^2<-x^2, откуда x^2>4 опять же, справедливо для всех x, для которых |x|>2. При |x|<2 x^2-4<0 Тогда при y≥-x^2 y+x^2=-x^2+4, откуда y=4-2x^2. Должно выполняться 4-2x^2≥-x^2 x^2≤4. Неравенство верно при всех x, таких что |x|<2 При y<-x^2 -y-x^2=-x^2+4, откуда y=-4 -4<-x^2 ⇒x^2<4 - Неравенство верно при всех x, таких что |x|<2 Соответственно, получается, что для всех x справедливы следующие равенства: y=-4 y=4-x^2. Графиком данного уравнения являются 2 линии: 1) прямая, параллельная оси Ox, проходящая через точку (0;-4) 2) парабола с ветвями, направленными вниз, и вершиной в точке (0;4).
4
Объяснение:
средний уровень
так как средняя Ариф. это сумма всех чисел, делённая на количество чисел
например:
2+2+2=6
6:3=2