М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
elvira122004
elvira122004
05.06.2022 19:06 •  Алгебра

При каких значениях параметра А корни уравнения х^3-12х^2+ах-60=0 можно рассматривать как длины сторон прямоугольного треугольника?

👇
Ответ:
oleg34643
oleg34643
05.06.2022

Объяснение:

Пусть x1, x2 - катеты, x3 - гипотенуза

Теорема Виета для кубического ур-я:

x1 + x2 + x3 = 12, отсюда x1 + x2 = 12 - x3

x1 * x2 * x3 = 60, отсюда x1 * x2 = 60/x3

По т. Пифагора

x3^2 = x1^2 + x2^2

(x1 + x2)^2 = (12 - x3)^2

(12 - x3)^2 = 144 - 24x3 + x3^2

x1^2  + x2^2 + 2x1*x2 = x3^2 +120/x3

x3^2 +120/x3 = 144 - 24x3 + x3^2

24x3 +120/x3 - 144 = 0    | *x3/24, где х3≠ 0. Мы можем это делать, т.к. x3 - не является корнем уравнения - 60 ≠ 0

x3^2 - 6x3 + 5 = 0

По Виета

x3 = 1        x3 = 5

Подставим x3 = 1  в выражение

1 - 12 + a - 60 = 0

a = 71

Подставим x3 = 5  в выражение

125 - 300 + 5a - 60 = 0

a = 47

Продолжаем искать корни

x1 + x2 = 11       (1)                   x1 + x2 = 7       (2)

x1 * x2 = 60,                           x1 * x2 = 12

отсюда x1 = 60/x2                отсюда x1 = 12/x2

Решаем 1-ую систему уравнений м-том подстановки

60/x2 + x2 = 11  | * x2

x2^2 - 11x2 + 60 = 0

D<0 - нет решения (Слава Богу)

Решаем 2-ую систему уравнений м-том подстановки

12/x2 + x2 = 7   |*x2

x2^2 - 7x2 + 12 = 0

x2 = 3                  x2 = 4

x1 = 4                   x1  = 3

Подставим x = 3  в выражение

27 - 108 + 3а - 60 = 0

а = 47

Подставим x = 4  в выражение

64 - 192 + 4а - 60 = 0

а = 47

корни данного уравнения x1 = 3   x2 = 4   x3 = 5

а = 47, a = 71

4,7(72 оценок)
Открыть все ответы
Ответ:
малина106
малина106
05.06.2022

Объяснение:

ОДЗ : cos2x ; sin2x

cosx ± 1/4 ; sinx ; cosx 0

x ± arccos0,25 + 2πk ; x πk/2 , k ∈ z

2*2cos^2 x - 2 = 1/2cos2x * ( ... )

2cos2x = 1/2cos2x * ( ... )

можно поделить на cos2x, так как cos2x также есть в знаменателе, то есть корни мы не теряем

2 = 1/2 * ( ... )

для удобства делаем замену: пусть 2x = t

2 = 1/2 * (/cost + 1/sint)

2 = /2cost + 1/2sint

(sint + cost) / 2costsint = 2

-2 (-/2 sint - 1/2 cost) / 2costsint = 2

-2 (-sin (π/3) sint - cos(π/3) cost) / 2costsint = 2

выносим минус за скобки и сокращаем 2

а также, используя формула приведения косинуса, только в обратную сторону, делаем все красиво

cos (π/3 - t) / costsint = 2

cos (π/3 - t) = 2costsint

cos (π/3 - t) - sin2t = 0

sin (π/2 - (π/3 - t) - sin2t = 0

sin (π/6 + t) - sin2t = 0

используем sin(t) - sin(s) = 2cos((t + s)/2) * sin ((t - s)/2)

и делим на 2

cos ((π + 18t)/12) * sin((π - 6t)/12) = 0

cos ((π + 18t)/12) = 0

sin ((π - 6t)/12) = 0

t = 5π/18 + 2πk/3

t = π/6 + 2πk

вспоминаем, что t = 2x

x = 5π/36 + πk/3

x = π/12 + πk

k ∈ Z

4,7(70 оценок)
Ответ:
ДаРоВаНиЕ
ДаРоВаНиЕ
05.06.2022

Объяснение:

Номер 6

(a - b)^2 = a^2 - 2ab + b^2

(a + b)^2 = a^2 + 2ab + b^2 =>

=> (a - b)^2 = (a + b)^2 - 4ab = 5^2 - 4 * (-2) = 25 + 4 * 2 = 33

Номер 5

2^6, 2^12 и так до 2^(6*n) имеет остаток от деления на 21 равный 1

5^3 = 125, посчитать не сложно

125 имеет остаток 20 от деления на 21

чтобы сумма чисел делилась на m, сумма их остатков должна делиться на m => чтобы 2^12 + 5^3 были кратны 21, их остатки должны суммарно давать число кратное 21

20 + 1 = 21

21 : 21 = 1 => сумма остатков кратна 21 => сумма чисел кратна 21

4,4(38 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ