1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
1. 2х²-7х+3=0
Это квадратное уравнение, которое мы можем решить по теореме Виета либо за дискриминантом. Лично для меня дискриминант является более лёгким путём решения.
D=b²-4ac = (-7)² - 4×2×3 = 49-24 = 25
x1,2 = 7±5/4; x1 = 3; x2=0,5
ответ: х=3 и х=0,5
4. 16х²-24х+9>0
Для начала прировняем уравнение к нулю и решим его.
16х²-24х+9=0
D=(-24)²-4×16×9 = 576 - 576 = 0
Дискриминант равен нулю, поэтому уравнение имеет лишь один корень:
х=-b/2a = 24/16×2 = 0,75
0,75
•>
Возьмём любое число с правого промежутка чтобы понять, положительным или отрицательным будет результат уравнения при таком х.
х=1
16×1²-24×1+9 = 16-24+9 = 1, 1>0, (0,75;+∞)
Проверим левый промежуток:
х=0
16×0²-24×0+9 = 9, 9>0, (-∞;0,75)
ответ: (-∞;0,75) U (0,75;+∞)
Объяснение:
всё решение я прикрепила