Объяснение:
1)у=х²-9
х²-9=0
х²=9
х₁,₂=±√9
х₁,₂=±3
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3
у 7 0 -5 -8 -9 -8 -5 0
Смотрим на график и полученные значения х₁ -3 и х₂=3.
Вывод: у>=0 при х∈(-∞, -3]∪[3, ∞)
(у больше нуля при х от - бесконечности до -3 и от 3
до + бесконечности)
(у=0 при х= -3; при х=3)
2)у=2x²-6
2x²-6=0
2x²=6
x²=3
x=±√3 (≈1,7)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 12 2 -4 -6 -4 2 12
Смотрим на график и полученные значения х₁= -√3 и х₂=√3.
Вывод: у>=0 при х∈(-∞, -√3]∪[√3, ∞)
(у больше нуля от - бесконечности до -1,7 и от 1,7 до
+ бесконечности)
(у=0 при х= -√3; х=√3)
3)у=5-х²
у= -х²+5
-х²+5=0
х²-5 =0
х²=5
х=±√5 (≈2,2)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у -11 -4 1 4 5 4 1 -4 -11
Смотрим на график и полученные значения х₁= -√5 и х₂=√5.
Ветви параболы направлены вниз.
Вывод: у>=0 при х∈[-√5, √5]
(у больше нуля от -2,2 до 2,2)
(у=0 при х= -√5; х=√5)
4)y=6-2x²
y= -2x²+6
2x²=6
x²=3
x=±√3 (≈1,7)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у -12 -2 4 6 4 -2 -12
Смотрим на график и полученные значения х₁= -√3 и х₂=√3.
Ветви параболы направлены вниз.
Вывод: у>=0 при х∈[-√3, √3]
(у больше нуля от -1,7 до 1,7)
(у=0 при х= -√3; х=√3)
1. Алгебраическая дробь — это дробь, числитель и знаменатель которой — многочлены (причем знаменатель отличен от нуля). Если ввести обозначение многочленов большими латинскими буквами: A, B, C, D, … , то алгебраическую дробь можно записать в виде.
2. Допустимыми значениями букв, входящих в алгебраическую дробь называют такие значения, при которых числитель этой дроби не равен нулю Одним из разложения многочленов на множители является применение формул сокращенного умножения.
3. В действиях с алгебраическими дробями. С алгебраическими дробями определены следующие действия: сложение, вычитание, умножение, деление и возведение в натуральную степень.
4.Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
5.Основное свойство алгебраической дроби позволяет сокращать дроби и приводить их к наименьшему общему знаменателю. Используют для: сокращения дробей, для нахождения наименьшего общего знаменателя необходимо найти наименьшее общее кратное (НОК) двух знаменателей.