Приравнять уравнение к нулю и решить как квадратное уравнение:
х² + 6x – 7=0
D=b²-4ac =36+28=64 √D=8
х₁=(-b-√D)/2a
х₁=(-6-8)/2
х₁= -14/2
х₁= -7;
х₂=(-b+√D)/2a
х₂=(-6+8)/2
х₂=2/2
х₂=1;
Точки пересечения графиком оси Ох х= -7; х=1, они являются нулями функции, так как значение у в этих точках равно нулю.
Координаты точек (-7; 0); (1; 0).
б) постройте график функции;
Построить график. График парабола со смещённым центром, ветви направлены вверх. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
у 9 0 -7 -12 -15 -16 -15 -12 -7 0 9
в) найдите у (х= – 4).
При х= -4 у= -15.
Если в задании найти у(х-4)², это график параболы у=х² с центром в начале координат, смещённый по оси Ох вправо на 4 единицы.
Пусть х и у - два числа из условия. Тогда их разность x-y делится на 4,6 и 9, т.е. она делится на НОК(4,6,9)=36. Значит x-y=36k. Поэтому, если найти хотя бы одно число у, имеющее остатки 1,1 и 7 при делении на 4,6 и 9, то все остальные получатся из него по правилу x=y+36k, где k - любое целое число (понятно, что при каждом целом k, получаемое х будет иметь те же остатки при делении на 4,6,9). Понятно, что y должно быть вида y=1+12m, т.е. на интервале от 0 до 35 может быть только y=25.Значит, все нужные трехзначные имеют вид 25+36k при k=3,4,...,27. (т.е. от 133 до 997 с шагом 36) Значит их сумма (сумма арифметической прогрессии) равна (133+997)*25/2=14125.
(х + у) * 3 - площадь первого поля, на котором работали все три бригады в течение 3 дней 96 - 3(х + у) - площадь второго поля 6у - площадь второго поля, на котором работали вторая и третья бригады в течение 6 дней Получим первое уравнение 96 - 3(х + у) = 6у Преобразуем его 96 - 3х - 3у - 6у = 0 => 3x +9y = 96 => x + 3y = 32 первое уравнение 1 *(х + у) + 8х = х + у + 8х = 9х + у - площадь второго поля, на котором работали вторая и третья бригады в течение 1 дня и затем первая бригада в течение 8 дней Получим второе уравнение 9х + у = 6у Преобразовав его, имеем 9х - 5у = 0
Решаем систему двух уравнений {х + 3у = 32 {9х - 5у = 0 Умножим первое уравнение на (- 9) {-9х - 27у = - 288 {9х - 5у = 0 Сложим эи уравнения - 9х - 27у + 9х - 5у = - 288 + 0 - 32у = - 288 у = (-288) : (- 32) у = 9 га в день вспахивали вторая и третья вместе В уравнение х + 3у = 32 подставим у = 9 и найдём х х + 3 * 9 = 32 х = 32 - 27 х = 5 га в день вспахивала первая бригада ответ: 5 га
В решении.
Объяснение:
Дана функция у = х² + 6x – 7:
а) найдите нули функции;
Приравнять уравнение к нулю и решить как квадратное уравнение:
х² + 6x – 7=0
D=b²-4ac =36+28=64 √D=8
х₁=(-b-√D)/2a
х₁=(-6-8)/2
х₁= -14/2
х₁= -7;
х₂=(-b+√D)/2a
х₂=(-6+8)/2
х₂=2/2
х₂=1;
Точки пересечения графиком оси Ох х= -7; х=1, они являются нулями функции, так как значение у в этих точках равно нулю.
Координаты точек (-7; 0); (1; 0).
б) постройте график функции;
Построить график. График парабола со смещённым центром, ветви направлены вверх. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
у 9 0 -7 -12 -15 -16 -15 -12 -7 0 9
в) найдите у (х= – 4).
При х= -4 у= -15.
Если в задании найти у(х-4)², это график параболы у=х² с центром в начале координат, смещённый по оси Ох вправо на 4 единицы.
Таблица:
х -4 -2 0 2 4
у 16 4 0 4 16.