Відповідь:(2cos2x+sinx–2)√5tgx=0
ОДЗ 5tgx > =0
(2cos2x+sinx–2)√5tgx=0
1ый корень √5tgx=0 = > x=πn
2cos2x+sinx–2 = 0
2(1–sin2x)+sinx–2 = 0
2–2sin2x+sinx–2 = 0
–2sin2x+sinx = 0
2sin2x–sinx = 0
sinx(2sinx–1) = 0
sinx = 0
2ой корень (кстати такой же как и первый)
x=πn
sinx = 1/2
3ий и 4ый корни
x = π/6 + 2πn
x = 5π/6 + 2πn (исключаем по ОДЗ, так как tg(5π/6) = –1/√3)
б) Отбор корней
1) π < = πn < = 5π/2
n=1 – > x = π
n=2 – > x = 2π
2) π < = π/6 + 2π·n < = 5π/2
n=1 – > x = π/6 + 2π = 13π/6
Итого мы отобрали 3 корня π, 2π и 13π/6
а) Pin, Pi/6 + 2Pin б) Pi, 2Pi и 13Pi/6
Пояснення: я не знаю правильно или нет но надеюсь
1920; 1984
Объяснение:
Ясно, что n > k
Предположим, что n>2^11 = 2048, но тогда
min(2^n - 2^k) = 2^12 - 2^11 =2048 (min - минимально возможно значение)
Это нас не устраивает, ибо XX век это все года принадлежащие промежутку: [1901; 2000]
Аналогично, если n<2^11, то
max(2^n - 2^k) = 2^10 - 2^1 =1022 (max - максимально возможное значение)
Это так же не укладывается в интервал: [1901; 2000]
Таким образом, n = 2^11, а для k тогда остается только два варианта:
k= 6; 7
То есть существует только два таких года:
1) 2^11 - 2^6 = 2048 - 64 = 1984
2) 2^11 - 2^7 = 2048 - 128 = 1920
Если не помните наизусть, приложил табличку степеней двоек.
2
Объяснение:
Найдем ОДЗ: 4х-6 >0 и х > 0
x > 1.5, x > 0 Из большего выбираем большее, значит ОДЗ: x > 1.5
Снимаем логарифмы и получаем
4х-6=х
3х=6
х=2