Если уравнение имеет целые корни, то они являются делителями свободного члена. Методом пристального взгляда замечаем, что x = -1 обращает уравнение в верное числовое равенство. А это значит, что в разложении на линейные множители точно будет множитель (x + 1).
*тут должно было быть деление в столбик, но я не знаю, как его вставить сюда*
А дальше произведение равно нулю тогда, когда один из множителей равен нулю, а остальные существуют.
Отдельный случай квадратное неравенство вырождается в линейное а значит выполняется для всех Пусть теперь квадратное неравенство, чтоб оно выполнялось нужно чтоб ветви параболы были направлены верх (очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется УчитЫвая второе условие авмтоматически и необходимо вЫполнение неравенства или
теперь рассмотрим второй случай - когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex] итого
; - с первых двух неравенств (аналогично по рассуждениям относительно первого случая) - что очевидно верно при условиях обьединяя все получаем что данное неравенство верно при а є
Отдельный случай квадратное неравенство вырождается в линейное а значит выполняется для всех Пусть теперь квадратное неравенство, чтоб оно выполнялось нужно чтоб ветви параболы были направлены верх (очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется УчитЫвая второе условие авмтоматически и необходимо вЫполнение неравенства или
теперь рассмотрим второй случай - когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex] итого
; - с первых двух неравенств (аналогично по рассуждениям относительно первого случая) - что очевидно верно при условиях обьединяя все получаем что данное неравенство верно при а є
Если уравнение имеет целые корни, то они являются делителями свободного члена. Методом пристального взгляда замечаем, что x = -1 обращает уравнение в верное числовое равенство. А это значит, что в разложении на линейные множители точно будет множитель (x + 1).
*тут должно было быть деление в столбик, но я не знаю, как его вставить сюда*
А дальше произведение равно нулю тогда, когда один из множителей равен нулю, а остальные существуют.
Откуда находим еще два решения: x = 2 и x = -0.5
ответ: x = -1, -0.5, 2