Пусть v - скорость пешехода, 6v - скорость мотоцикла; S - расстояние между пунктами А и В.
Рассмотрим момент времени, когда мотоциклист догнал пешехода. Пусть а - расстояние, которое осталость пройти пешеходу до пункта В.
Мотоциклист потратил время, чтобы доехать до пункта В, отдохнуть там полчаса, прежде чем вернулся. Это время такое:
За это время, пешеход успел пройти:
И ему осталось ещё пройти:
В этот момент мотоциклист отправился обратно. Вторая встреча мотоциклиста с пешеходом произошла через час. Однако в течение это час он полчаса отдыхал и ехал расстояние а. Поэтому это время надо вычесть из 1 часа. А вычитать надо такое время:
Итак, пешеходу и мотоциклисту необходима преодолеть расстояние:
за время:
Составляем уравнение и кое-что находим:
Теперь рассмотрим схему движения с момента их первой встречи и до полного завершения путешествия, для пешехода это пункт В, для мотоциклиста - пункт А. После первой встречи мотоциклист проехал расстояние а, затем отдыхал полчаса и, наконец, вернулся в исходный пункт А. Пешеход же только расстояние а. Т.к. они одновременно попали в указанные пункты, то их время в пути тоже одинаково. Составляем уравнение:
Вроде бы ничего и не получается. Однако обратите внимание на ! А это как раз то, что нам надо. Это время, за которое пешеход преодолеет расстояние S (между А и В), идя со скоростью v. Кроме этого, ранее мы вычислили, что a=2v.
1) выбрать двух человек с учетом их порядка пусть в классе х чел т.к. 2 чел из х чел, то это х*(х-1) = 756 х^2 -х -756 =0 Д=1+4*756 =3025 х=-27 не удовлетворяет усл задачи х2=28 ответ: 28 чел 2)" х" всего было туристов тогда C(4;x) = x! / (x-4)!*4! число выбора 4 дежурных C(2;x) = x! / (x-2)! * 2! число выбора 2 дежурных по условию задачи
Рассмотрим момент времени, когда мотоциклист догнал пешехода. Пусть а - расстояние, которое осталость пройти пешеходу до пункта В.
Мотоциклист потратил время, чтобы доехать до пункта В, отдохнуть там полчаса, прежде чем вернулся. Это время такое:
За это время, пешеход успел пройти:
И ему осталось ещё пройти:
В этот момент мотоциклист отправился обратно. Вторая встреча мотоциклиста с пешеходом произошла через час. Однако в течение это час он полчаса отдыхал и ехал расстояние а. Поэтому это время надо вычесть из 1 часа. А вычитать надо такое время:
Итак, пешеходу и мотоциклисту необходима преодолеть расстояние:
за время:
Составляем уравнение и кое-что находим:
Теперь рассмотрим схему движения с момента их первой встречи и до полного завершения путешествия, для пешехода это пункт В, для мотоциклиста - пункт А.
После первой встречи мотоциклист проехал расстояние а, затем отдыхал полчаса и, наконец, вернулся в исходный пункт А. Пешеход же только расстояние а. Т.к. они одновременно попали в указанные пункты, то их время в пути тоже одинаково. Составляем уравнение:
Вроде бы ничего и не получается. Однако обратите внимание на ! А это как раз то, что нам надо. Это время, за которое пешеход преодолеет расстояние S (между А и В), идя со скоростью v. Кроме этого, ранее мы вычислили, что a=2v.
Вычисляем:
ответ: 7 час