Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
Пусть скорость автобуса = V1, скорость автомобиля = V2, весь путь AB=S, время, за которое автобус и автомобиль преодолевают расстояние, равное AB, = t1 и t2 соответственно.
Чтобы оказаться в точке A одновременно, автобусу нужно пройти путь S 2a раз, а автомобилю 2b+1 раз; a∈Z; b∈Z. Тогда справедливо равенство
В момент их первой встречи в сумме автомобиль и автобус весь путь S, значит справедливо равенство раз автомобиль обогнал автобус, значит в момент обгона (2ч34мин=154мин) он расстояние, на S большее, чем автобус, значит
Также можем составить систему уравнений времени
Подставляем время выразим a Чтобы условие b∈Z выполнялось, и тогда
По-русски вы написали не очень правильно. Правильно так: Необходимо сделать 360 станков для плана. Каждый день делали по 4 станка сверх плана, и задача была выполнена за 1 день до срока. Сколько дней должны были потратить по плану? Задача решается системой уравнений: Обозначаем t - количество дней по плану, x - станков в день должны были делать. { x*t = 360 { (x+4)(t-1) = 360 Раскрываем скобки x*t + 4t - x - 4 = 360 Подставляем 1 уравнение 360 + 4t - x - 4 = 360 x = 4t - 4 = 4(t - 1) Подставляем в 1 уравнение 4(t - 1)*t = 360 (t - 1)*t = 90 9*10 = 90 t = 10 дней - время, за которое должны были сделать станки по плану. x = 4*9 = 36 станков - должны были делать в день.
ответ:a<-1/12
Объяснение:
Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
D=1+12a<0 <=> a<-1/12