Объяснение:
4. x₃=20 x₅=-40 S₉=?
{x₃=x₁+2d=20
{x₅=x₁+4d=-40
Вычитаем из второго уравнения первое:
2d=-60 |÷2
d=-30.
x₁+2*(-30)=20
x₁-60=20
x₁=80.
x₉=x₁+8d=
S₅=80+8*(-30)=80+(-240)=80-240=-160.
S₉=(80+(-160)*9/2=(80-160)*9/2=-80*9/2=-40*9=-360.
ответ: S₉=-360.
5. S₃=168 S₄₊₅₊₆=21 S₅=?
{S₃=b₁+b₁q+b₁q²=168 {b₁*(1+q+q²)=168
{S₄₊₅₊₆=b₁q³+b₁q⁴+b₁q⁵ {b₁q³*(1+q+q²)=21
Разделим второе уравнение на первое:
q³=1/8=(1/2)³
q=1/2.
b₁*(1+(1/2)+(1/2)²)=168
b₁*(1+(1/2)+(1/4))=168
b₁*(1³/₄)=168
(7/4)*b₁=168
b₁=168*4/7=24*4
b₁=96.
S₅=96*(1-(1/2)⁵)/(1-(1/2))=96*(1-(1/32))/(1/2)=96*(31/32)/(1/2)=
=(96*31/32)/(1/2)=31*3/(1/2)=93*2=186.
ответ: S₅=186.
Объяснение:
4. x₃=20 x₅=-40 S₉=?
{x₃=x₁+2d=20
{x₅=x₁+4d=-40
Вычитаем из второго уравнения первое:
2d=-60 |÷2
d=-30.
x₁+2*(-30)=20
x₁-60=20
x₁=80.
x₉=x₁+8d=
S₅=80+8*(-30)=80+(-240)=80-240=-160.
S₉=(80+(-160)*9/2=(80-160)*9/2=-80*9/2=-40*9=-360.
ответ: S₉=-360.
5. S₃=168 S₄₊₅₊₆=21 S₅=?
{S₃=b₁+b₁q+b₁q²=168 {b₁*(1+q+q²)=168
{S₄₊₅₊₆=b₁q³+b₁q⁴+b₁q⁵ {b₁q³*(1+q+q²)=21
Разделим второе уравнение на первое:
q³=1/8=(1/2)³
q=1/2.
b₁*(1+(1/2)+(1/2)²)=168
b₁*(1+(1/2)+(1/4))=168
b₁*(1³/₄)=168
(7/4)*b₁=168
b₁=168*4/7=24*4
b₁=96.
S₅=96*(1-(1/2)⁵)/(1-(1/2))=96*(1-(1/32))/(1/2)=96*(31/32)/(1/2)=
=(96*31/32)/(1/2)=31*3/(1/2)=93*2=186.
ответ: S₅=186.
Всего n=7+5=12 кроликов
По формуле классической вероятности
p=m/n=5/12 - вероятность вынуть черного кролика в одном испытании
q=7/12-вероятность вынуть белого кролика в одном испытании
Случайная величина Х – количество выбранных черных кроликов в четырех испытаниях
может принимать значения от 0 до 4
Х=0
означает, что ни разу не был выбран черный кролик.
Тогда вероятность этого события:
p₀=С⁰₄(5/12)⁰·(7/12)⁴
Х=1
означает, что один раз был выбран черный кролик.
Тогда вероятность этого события:
p₁=С¹₄(5/12)·(7/12)³
Х=2
означает, что два раза был выбран черный кролик.
Тогда вероятность этого события:
p₂=С²₄(5/12)²·(7/12)²
Х=3
означает, что три раза был выбран черный кролик.
Тогда вероятность этого события:
p₃=С³₄(5/12)³·(7/12)
Х=4
означает, что три раза был выбран черный кролик.
Тогда вероятность этого события:
p₄=С⁴₄(5/12)⁴·(7/12)⁰
Закон распределения - таблица, в первой строке значения
Х от 0 до 4
во второй их вероятности.