1.
2x-5y при x=7; y=3
2×7-5×3
14-15= -1
ответ: -1
2.
3+2a = -3+2a при a=11
3+3= -2а+2а
6=0 не тождество т.к 6> 0
ответ: 3+2a > -3+2a
3.
1) 8y-4,4y = 3,6у
2)15a-a+b-6b = 15а-1а+1b-6b=14a+(-5b) = 14a-5b
3)2a+(3a-8b)= 2a+3a-8b = 5a-8b
4)(5-2b)-(7+10b) = 5-2b-7-10b = 5-7-2b-10b =-2-12b
5)(2-4b)-(31b-6)-11 = 2-4b-31b+6-11 = 2+6-11-4b-31b = -3-35b
4.
1)3x+2=0
3x=0-2
3x= -2
x= -2/3
2)8x-5=x-40
8х-х=5-40
7х=-35
х=5
3)6x+(3x-2)=14
6х+3х-2=14
9х=2+14
9х=16
х= 1 целая 7/9
объяснение:
если непонятно что-то , то напиши в комментариях
ответ:
начнем с 2-х-значных:
10х+у = 13х+13у, где х и у - натуральные числа от 1 до 9 и 0(для разряда единиц)
3х+12у = 0 - невыполнимо при натуральных х и у.
переходим к 3-х-значным:
100х + 10у + z = 13x + 13y + 13z
87x = 3y+12z
29x = y + 4z
видим, что х может быть равен только 1, так как при х> 1, правая часть не будет равняться левой ( максимально возможное значение правой части при у = z = 9 и равно 45)
итак получили: y+4z=29
для y,z - натуральных от 1 до 9, очевидно, что z может равняться только 5,6,7
тогда :
при z = 5, y =9
при z = 6, y = 5.
при z = 7, y = 1
итак получились числа: 195; 156; 117
для 4 и далее значных чисел рассмотрение теряет смысл, так как максимально возможная сумма цифр 4-значного числа равно 9*4 = 36. и если его умножить на 13 ника не получится 4-значное число..
ответ: 195; 156; 117.
Все в объяснениях.
Объяснение:
1. Постройте график функции y=f(x).
Гипербола, полученная сдвигом графика у=
на 1 вверх по оу. у(-2)=0,5 ;у(-1)=1 ;у(-2)=0,5 ;у(2)=-0,5 ;у(1)=-1 ;у(2)=-0,5
2. f '(x)= (
) ' =
.
3. Уравнения касательной y =к (x −x₀)+f (x₀) .
Прямая y=
, к=1\4.
Найдем точку касания
(x-2)²=0 , x=2.
f (2)=-1\2+1=0,5
y =0,25* (x −2)+0,5
у=0,25х
Вторая касательная пройдет через х=-2
f (-2)=1\2+1=1,5
y =0,25* (x −2)+1,5
у=0,25х+1
4. Наименьшее значение функции у'=(x−f(x) ) '=(х
)' =
=1 -
=
.
у'=0 ,
,х=1 , х=-1.
На промежутке [1/2;∞) лежит только х=1
у'______[1\2] - - - - -(1)+ + + + +
y ↓ ↑
x=1 точка минимума.
Наименьшее значение может быть при х=1\2 или х=1:
у(1\2) =
.
у(1)= 1+1-1=1.
Наименьшее значение функции х-f(x) равно -0,5