(x²-2x+4)(x²-x+5/4)=3|·4
(x²- 2x + 4)(4x²- 4x + 5) = 12;
(x²- 2x + 1 + 3)(4x²- 4x + 1 + 4) = 12;
((x - 1)² + 3)((2x - 1)²+ 4) = 12.
Поскольку (x - 1)² + 3 имеет наименьшее значение 3, а (2x - 1)²+ 4 - нименьшее значение 4, то их произведение принимает наименьшее значение 3 · 4 = 12.
Значит равенство ((x - 1)² + 3)((2x - 1)²+ 4) = 12 возможно только при условии, что (x - 1)² = 0 и (2x - 1)² = 0. А поскольку не существует такого значения х, при котором одновременно (x - 1)² = 0 и (2x - 1)² = 0, то данное уравнение не имеет решений.
с⁴-с³+с²+с=с(с³-с²+с+1)=с(с(с²-1)+(с+1))=с(с(с-1)(с+1)+(с+1))=с((с+1)(с(с-1)+1))
Если по максимум раскладывать, то только так