Нерівність 8 клас, до ть будь ласка. Знайдіть найменше число x, яке задовольняє нерівність [x] * {x} ≥ 3. Тут [x] - ціла частина x, тобто найбільше ціле число, яке не перевищує x, а {x} = x - [x] — дробова частина числа x.
Попробуем найти такое число на промежутке: x∈[4;5)
На данном промежутке дробная часть числа возрастает с увеличением x.
На данном промежутке : [x] =4
[x]*{x}>=3
4*{x}>=3
{x}>=3/4=0.75
Таким образом, наименьшее x, которое удовлетворяет неравенству
[x]*{x}>=3, это число x=4.75
Примечание: x<=0 рассматривать нет смысла, так как в этом случае: [x]<=0 , а {x} >= 0 (да, дробная часть всегда положительна, даже для отрицательных чисел) → [x]*{x}<=0, что нас не устраивает.
Пусть x (кг) - масса первого сплава, y (кг) - масса второго сплава. Тогда масса третьего сплава равна
x+y = 200. (уравнение 1)
В первом сплаве содержится 10 % никеля, т.е. 0,1x (кг) никеля, а во втором сплаве - 30% никеля, т.е. 0,3y (кг) никеля. Третий сплав содержит 25% никеля, т.е. 0,25*200 = 50 (кг) никеля. Получаем уравнение:
0,1x+0,3y = 50.
Умножим последнее уравнение на 10, получим:
x+3y = 500. (уравнение 2)
Вычтем из уравнения 2 уравнение 1:
x+3y - (x+y) = 500 - 200,
2y = 300,
y = 150,
x = 200 - 150 = 50.
Тогда y-x = 150 - 50 = 100 (кг), т.е. масса первого сплава меньше массы второго сплава на 100 кг.
Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
ответ: 4.75
Объяснение:
Очевидно, что для x>0
верно неравенство:
[x]*{x}<[x], поскольку 0<={x}<1
Таким образом, если x<4, то [x]<=3, то есть
[x]*{x}<[x]<=3
Значит, нужно искать x>=4
Попробуем найти такое число на промежутке: x∈[4;5)
На данном промежутке дробная часть числа возрастает с увеличением x.
На данном промежутке : [x] =4
[x]*{x}>=3
4*{x}>=3
{x}>=3/4=0.75
Таким образом, наименьшее x, которое удовлетворяет неравенству
[x]*{x}>=3, это число x=4.75
Примечание: x<=0 рассматривать нет смысла, так как в этом случае: [x]<=0 , а {x} >= 0 (да, дробная часть всегда положительна, даже для отрицательных чисел) → [x]*{x}<=0, что нас не устраивает.