М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lenocekkotik856
lenocekkotik856
25.06.2020 14:29 •  Алгебра

Решить уравнения:
1) 28x³+3x²+3x+1=0
2) (x²+4x)(x²+x-6)=(x³-16x)(x²-2x-35)

👇
Ответ:
bekbolata45
bekbolata45
25.06.2020

1-ое уравнение:

x=-\dfrac{1}{4}

2-ое уравнение:

x_1=0\\x_2=-4\\x_3=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}\right)+\dfrac{7}{3}\\x_4=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}+\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\x_5=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}-\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\

Объяснение:

28x^3+3x^2+3x+1=0

разложение на множители):

Заметим, что данное уравнение хорошо раскладывается на множители:

28x^3+3x^2+3x+1=28x^3+7x^2-4x^2-x+4x+1=\\=7x^2(4x+1)-x(4x+1)+(4x+1)=(4x+1)(7x^2-x+1)=0

Второй множитель не имеет корней.

Поэтом ответ -\dfrac{1}{4}.

Поделим исходное уравнение на 28. Получим:

x^3+\dfrac{3}{28}x^2+\dfrac{3}{28}x+\dfrac{1}{28}=0, где a=\dfrac{3}{28},\;b=\dfrac{3}{28},\;c=\dfrac{1}{28}

Выполним вычисления:

Q=\dfrac{a^2-3b}{9}=-\dfrac{27}{784}\\R=\dfrac{2a^3-9ab+27c}{54}=\dfrac{351}{21952}\\S=Q^3-R^2\approx-0.0003\\\varphi =\dfrac{1}{3}\times \mathrm{Arsh}\left(\dfrac{|R|}{\sqrt{|Q|^3}}\right)=\dfrac{1}{2}\ln3

Тогда действительный корень будет равен:

x=-2\sqrt{\dfrac{27}{784}}\mathrm{sh}\left(\dfrac{1}{2}\ln 3\right)-\dfrac{1}{28}=-\dfrac{1}{4}

Пришли к тому же ответу.

Уравнение решено!

2)

(x²+4x)(x²+x-6)=(x³-16x)(x²-2x-35)

Раскроем скобки и упростим вырождение:

x^5-3x^4-56x^3+34x^2+584x=0\\\\x=0\\x^4-3x^3-56x^2+34x+584=0

Второе уравнение раскладывается на множители:

(x+4)(x^3-7x^2-28x+146)=0\\\\x=-4\\x^3-7x^2-28x+146=0

Последнее кубическое уравнение не имеет целых корней.

Поэтому нужно считать так же, как мы делали это при решении 1-ого уравнения 2-ым

x^3-7x^2-28x+146=0\\\\Q=\dfrac{133}{9}\\R=\dfrac{746}{27}\\S\approx24640

Значит имеем 3 корня:

\varphi=\dfrac{1}{3}\arccos(\dfrac{R}{\sqrt{Q^3}})=\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}

x_1=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}\right)+\dfrac{7}{3}\\x_2=x=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}+\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\x_3=x=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}-\dfrac{2\pi}{3}\right)+\dfrac{7}{3}

Итого, уравнение имеет 5 корней:

x_1=0\\x_2=-4\\x_3=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}\right)+\dfrac{7}{3}\\x_4=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}+\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\x_5=-2\sqrt{\dfrac{133}{9}}\cos\left(\dfrac{\arccos\left(\dfrac{746\sqrt{133}}{17689}\right)}{3}-\dfrac{2\pi}{3}\right)+\dfrac{7}{3}\\

Задание выполнено!

4,5(56 оценок)
Открыть все ответы
Ответ:
LiveRiot
LiveRiot
25.06.2020
Можно попробовать немного  скосить  отбор подобрав пример как границу:40+40+20=100 Нок 40 . Понятно  что наибольшее  общее  кратное больше  самого  большего  из 3  членов. То  если  выбрать  тройку  с наименьшим  из  всех  наибольших  из 3 чисел  во всех возможных тройках  то  получим 33,3*3 то  есть  понятно  что  наибольшее  общее кратное  больше 33. то  можно  34 35  36 37 38 39  далее  рассуждаем  так. Если наибольшее  общее  кратное  не равно  самому числу 
То  оно  хотя бы  вдвое  больше самого  большого  из них. Но  среди чисел  33 34 35 36 37 38 39  33*2= 66>40  как  и другие члены  естественно. То  есть  наибольшее  из   этих  3 чисел  и будет  являться  их нок. И  причем  3 числа не  могут  быть равны.
А  другие  2  делители наибольшего  числа. Можно  моментально  отсеять  числа 
37  35  39 36 38 34
тк  наибольшая  их  возможная сумма  при  их делителях равна :  
37+37+1<100
35+7+7<100
39+13+13<100
36+36+18<100
34+17+17<100
38+38+19=95<100  (на  грани :) )
То  очевидно что  ответ  40
ответ:40
4,5(74 оценок)
Ответ:
DashaPol09
DashaPol09
25.06.2020
Можно попробовать немного  скосить  отбор подобрав пример как границу:40+40+20=100 Нок 40 . Понятно  что наибольшее  общее  кратное больше  самого  большего  из 3  членов. То  если  выбрать  тройку  с наименьшим  из  всех  наибольших  из 3 чисел  во всех возможных тройках  то  получим 33,3*3 то  есть  понятно  что  наибольшее  общее кратное  больше 33. то  можно  34 35  36 37 38 39  далее  рассуждаем  так. Если наибольшее  общее  кратное  не равно  самому числу 
То  оно  хотя бы  вдвое  больше самого  большого  из них. Но  среди чисел  33 34 35 36 37 38 39  33*2= 66>40  как  и другие члены  естественно. То  есть  наибольшее  из   этих  3 чисел  и будет  являться  их нок. И  причем  3 числа не  могут  быть равны.
А  другие  2  делители наибольшего  числа. Можно  моментально  отсеять  числа 
37  35  39 36 38 34
тк  наибольшая  их  возможная сумма  при  их делителях равна :  
37+37+1<100
35+7+7<100
39+13+13<100
36+36+18<100
34+17+17<100
38+38+19=95<100  (на  грани :) )
То  очевидно что  ответ  40
ответ:40
4,4(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ