М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
erkinsultanov
erkinsultanov
03.10.2022 03:53 •  Алгебра

Алгебра. Розв'язування показникових нерівностей


Алгебра. Розв'язування показникових нерівностей

👇
Ответ:
nam0
nam0
03.10.2022

1)

ОДЗ:   x^2-x-6\geq0   ⇒      (x+2)(x-3)\geq 0   ⇒  x \in (-\infty; -2] \cup [3;+\infty)

(2^{x}-2)\cdot \sqrt{x^2-x-6} \geq 0      ⇔

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0    или   (2^{x}-2)\cdot \sqrt{x^2-x-6} 0

(2^{x}-2)\cdot \sqrt{x^2-x-6} =0      ⇒     2^{x}-2=0   или   \sqrt{x^2-x-6} =0   ⇒

x=1   или    x=-2     или    x=3

x=1       не входит в ОДЗ

два корня    x=-2     или    x=3

(2^{x}-2)\cdot \sqrt{x^2-x-6} 0     при    x \in (-\infty; -2] \cup [3;+\infty)

\sqrt{x^2-x-6} 0,   тогда     2^{x}-20  ⇒     2^{x}2   ⇒     x 1

C учетом x \in (-\infty; -2] \cup [3;+\infty)  получаем ответ:  

\{-2\} \cup [3;+\infty)

2)

ОДЗ:   x^2-2x-8\geq0   ⇒      (x+2)(x-4)\geq 0   ⇒  x \in (-\infty; -2] \cup [4;+\infty)

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} \leq 0      ⇔

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0    или   (3^{x-2}-1)\cdot \sqrt{x^2-2x-6}

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8} =0      ⇒     3^{x-2}-1=0   или   \sqrt{x^2-2x-8} =0   ⇒

x=2   или    x=-2     или    x=4

x=2       не входит в ОДЗ

два корня    x=-2     или    x=4

(3^{x-2}-1)\cdot \sqrt{x^2-2x-8}     при    x \in (-\infty; -2] \cup [4;+\infty)

\sqrt{x^2-2x-8} 0,   тогда     3^{x-2}-1  ⇒     3^{x-2}   ⇒     x-2

C учетом      x \in (-\infty; -2] \cup [4;+\infty)  получаем ответ:  

(-\infty;-2]\cup \{2\}

3)

\sqrt{6\cdot 3^{x}-2} 3^{x}+1

Так как     3^{x}+1 0         при любых х, возводим данное неравенство в квадрат:

6\cdot 3^{x}-2(3^{x})^2+2\cdot 3^{x}+1

(3^{x})^2-4\cdot 3^{x}+3

D=16-12=4

(3^{x}-1)(3^{x}-3)

1< 3^{x}

Показательная функция с основанием 3 возрастает

0 < x < 1

О т в е т. (0;1)

4)

\sqrt{2\cdot 5^{x+1}-1} 5^{x}+2

Так как     5^{x}+2 0         при любых х, возводим данное неравенство в квадрат:

2\cdot 5^{x+1}-1(5^{x})^2+4\cdot 5^{x}+4

5^{x+1}=5\cdot 5^{x}

(5^{x})^2-6\cdot 5^{x}+5

D=36-20=16

(5^{x}-1)(5^{x}-5)

1< 5^{x}

Показательная функция с основанием 5 возрастает

0 < x < 1

О т в е т. (0;1)

         

4,6(95 оценок)
Открыть все ответы
Ответ:
superdmnomber1
superdmnomber1
03.10.2022

Найдем значение выражения 2 * ctg (pi/2 - 4 * a) * tg (pi/2 + 2 * a) * ctg (4 * a), если известно а = pi/6.  

Подставим известное значение в само выражение и вычислим его значение. То есть получаем:  

2 * ctg (pi/2 - 4 * a) * tg (pi/2 + 2 * a) * ctg (4 * a);  

2 * ctg (pi/2 - 4 * pi/6) * tg (pi/2 + 2 * pi/6) * ctg (4 * pi/6);  

2 * ctg (pi/2 - 2 * pi/3) * tg (pi/2 + pi/3) * ctg (2 * pi/3);  

2 * ctg ((3 * pi - 4 * pi)/6) * tg ((3 * pi + 2 * pi)/6) * ctg (2 * pi/3);  

2 * ctg (-pi/6) * tg (5 * pi/6) * ctg (2 * pi/3);  

-2 * ctg (pi/6) * tg (5 * pi/6) * ctg (2 * pi/3);  

-2 * √3 * (-√3/3) * (-√3/3) = -2  * (√3/3) = -2 * √3/3.

Объяснение:

Найдем значение выражения 2 * ctg (pi/2 - 4 * a) * tg (pi/2 + 2 * a) * ctg (4 * a), если известно а = pi/6.  

Подставим известное значение в само выражение и вычислим его значение. То есть получаем:  

2 * ctg (pi/2 - 4 * a) * tg (pi/2 + 2 * a) * ctg (4 * a);  

2 * ctg (pi/2 - 4 * pi/6) * tg (pi/2 + 2 * pi/6) * ctg (4 * pi/6);  

2 * ctg (pi/2 - 2 * pi/3) * tg (pi/2 + pi/3) * ctg (2 * pi/3);  

2 * ctg ((3 * pi - 4 * pi)/6) * tg ((3 * pi + 2 * pi)/6) * ctg (2 * pi/3);  

2 * ctg (-pi/6) * tg (5 * pi/6) * ctg (2 * pi/3);  

-2 * ctg (pi/6) * tg (5 * pi/6) * ctg (2 * pi/3);  

-2 * √3 * (-√3/3) * (-√3/3) = -2  * (√3/3) = -2 * √3/3.

4,6(57 оценок)
Ответ:
Vika201880
Vika201880
03.10.2022
Серединный перпендикуляр Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему а АВ и АО=ВО (О=а АВ) OТеорема: Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Дано: М - произвольная точка а, а- серединный перпендикуляр к отрезку АВ. Доказать: МА=МВ Доказательство: Если М АВ, то М совпадает с точкой О МА=МВ. 2) Если М АВ, то АМО= ВМО по двум катетам (АО=ВО, МО- общий катет) МА=МВ. aОбратно: Каждая точка, равноудаленная от концов этого отрезка, лежит на серединном перпендикуляре к нему. Дано: NА=NВ, прямая m – серединный перпендикуляр к отрезку АВ. Доказать: N – лежит на прямой m. Доказательство: 1)Пусть N АВ, тогда N совпадает с O, и N лежит на прямой m. 2) Пусть N АВ, тогда: АNВ – равнобедренный (AN=BN) NO медиана высота АNВ NO AB. 3) Через точку О к прямой АВ можно провести только один серединный перпендикуляр NO и m совпадают N а. O
4,8(3 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ