Объяснение:
Мышцы ног – самая большая мышечная группа. Составляет примерно 50% общей мускулатуры человека. Это ягодичные мышцы, квадрицепсы, бицепсы бедра, икроножные мышцы.
Мышцы живота – прямые и косые мышцы.
Для поддержания мышц в тонусе и оздоровления существуют разные комплексы упражнений. В свою очередь эти упражнения условно можно разделить на три группы:
• упражнения, в которых участвует одна группа мышц;
• упражнения, в которых участвуют несколько групп мышц;
• упражнения, в которых участвуют почти все группы мышц.
Нельзя забывать, что все упражнения нужно выполнять в определённой последовательности и дозировке. Обычно упражнения начинают делать с головы, а заканчивают прыжками, бегом или ходьбой на месте.
Дозировка нагрузки – это важный момент в выполнении упражнений, касающийся изменения интенсивности и длительности нагрузки. Упражнения можно делать дольше и интенсивнее или, наоборот, уменьшить интенсивность и количество упражнений на те или иные группы мышц при их усталости. Также это касается и интервалов между упражнениями.
Существует много разных упражнений, но составляя свой комплекс, нужно точно знать цель упражнения, его дозировку и последовательность упражнений в комплексе.
Рассмотрим разминочный комплекс из 12 упражнений.
Для мышц шеи
- и. п. ноги на ширине плеч, руки на пояс. Наклоны головой. На счёт 1 наклон головы вперёд, на счёт 2 назад, на счёт три 3 в левую сторону, на счёт 4 в правую сторону.
- и. п. тоже. Повороты головой. На счёт 1,2 поворот головы в левую сторону, на счёт 3,4 в правую сторону.
- и. п. тоже. Круговые движения головой. На счёт 1,2,3,4 круговые движения в левую сторону. На счёт 1,2,3,4 в правую сторону.
Для мышц рук
- и. п. ноги на вместе, правую руку вверх над головой, левую руку вниз в дол туловища. Рывки руками. На счёт 1,2 рывки руками, на счёт 3,4 смена положения рук.
- и. п. ноги на ширине плеч, руки перед грудью. Рывки руками. На счёт 1,2 рывки руками перед собой, на счёт 3,4 рывки руками с отведением рук в левую сторону. На счёт 1,2 рывки руками перед собой, на счёт 3,4 рывки руками с отведением рук в правую сторону.
- и. п. ноги на ширине плеч, руки к плечам. Круговые движения плечами. На счёт 1,2,3,4 круговые движения вперёд. На счёт 1,2.3,4 круговые движения назад.
Для мышц спины и ног
- и. п. ноги на ширине плеч, руки на пояс. Наклоны туловища. На счёт 1 наклон туловища вперёд, на 2 назад, на 3 в левую сторону, на 4 в правую сторону.
- и. п. тоже. Повороты туловищем. На счёт 1,2 повороты туловища в левую сторону, на счёт 3,4 в правую сторону.
- и. п. тоже. Круговые движения туловищем. На счёт 1,2,3,4 круговые движения туловищем в левую сторону, на счёт 1,2,3,4 в правую сторону.
Для мышц ног
- и. п. Ноги вместе. Руки на пояс. Прыжки на месте.
- и. п. Ноги на ширине плеч, руки вытянули перед собой. Махи ногами. На счёт 1,2 махом левой ноги носком касаемся кисти правой руки, на счёт 3,4 махом правой ноги носком касаемся кисти левой руки.
- и. п. (для девочек) руки на пояс, ноги на ширине плеч. (для мальчиков) руки за голову ноги на ширине плеч.
Приседания.
Над всеми векторами черта. Надо найти координаты векторов А₁А₂; А₁А₃; А₁А₄. для чего от координат конца вектора отнимаем координаты начала.
А₁А₂=(-2;7;-6); А₁А₃(-6;1;-3); А₁А₄(-13;0;-3), затем находим определитель третьего порядка
-2 7 -6
-6 1 -3
-13 0 -3, у меня нет тут вертикальных черточек для него , определитель равен
40 0 15
-6 1 -3
-13 0 -3
=1*(-1)²⁺²*(-120+195)=75, далее берем модуль 75, и делим его на шесть. это есть объем тетраэдра и он равен 75/6=12.5/ед. куб./
Чтобы найти высоту, опущенную на грань А₁А₂А₃, надо найти площадь грани А₁А₂А₃ , т.е. половину модуля векторного произведения векторов А₁А₂ и А₁А₃
Векторное произведение находим как определитель
i j k
-2 7 -6
-6 1 -3, он равен
i *(-21+6) -j *(6-36)+ k*(-2+42)= -15i +30j +40 k
определитель находил путем его разложения по элементам первой строки, зная координаты вектора (-15;30;40), можем найти половину модуля этого произведения, что и будет площадью грани А₁А₂А₃ , т.е.
0.5*√(225+900+1600)=0.5*√2725=2.5√109≈26.1
Зная площадь s грани А₁А₂А₃ и объем тетраэдра v можно теперь найти высоту h, опущенную на эту грань из вершины А₄, она равна h=3v/s=
3*12.5/(2.5√109)=15√109/109≈1.44
360
Объяснение:
Найдем площадь плитки и стены. Плитки 225см^2 а стены 81000см^ делим и получаем 360