Рассмотрим два числа A и В
Пусть A=a²+b² B=c²+d² Надо доказать что A*B=x²+z²
A*B=(a²+b²)*(c²+d²)=a²c² + a²d² + b²c² + b²d² = (a²c² + b²d²) + (a²d² + b²c²) + 2*abcd - 2*abcd = *
1. * = (a²c² +2*ac*bd +b²d²) + (a²d² - 2*ad*bc+ b²c²) = (ac + bd)² + (ad - bc)²
2. *= (a²c² - 2*ac*bd +b²d²) + (a²d² + 2*ad*cd+ b²c²) = (ac - bd)² + (ad + bc)²
Таким образом нашли x₁₂ = ac + - bd и z₁₂ = ad - + bc
доказали что если каждое из двух чисел представимо в виде суммы квадратов двух натуральных чисел, то их произведение также можно разложить в сумму квадратов двух целых чисел
условие безобразно оформлено, пришлось как-то догадываться, что имелось ввиду, так что, если я решил не те примеры, что вы ждали - ваша вина, надо понятно оформлять.
Это устные упражнения на тему (a^3 + b^3)/(a^2 - a*b + b^2) = (a + b); (ну, конечно, и сумма и разность кубов сюда укладываются, для отрицательных чисел целые степени определены.)
в случае А) a = 1/2000 b = - 1/1999 (ну, в смысле число в минус первой степени);
ответ 1/2000 - 1/1999 = - 1/(1999*2000) = - 1/3998000;
Б) a = 1/1222 b = 1/777,
ответ 1/1222 + 1/777 = 1999/949494; может это и можно сократить, но ...
степень 2