Пусть х – число этажей, у – квартир, z –подъездов. х*y*z=231 Разложим число 231 на множители: 3*7*11=231 По условиям задачи количество квартир на каждом этаже больше 2, но меньше 7, т.е. 2> у <7 Отсюда видно, что число квартир равное 7 или 11 не подходит, т.к. не будет выполняться неравенство. Неравенство выполняется, если количество квартир на этаже равно 3: 2> 3 <7 (Значит 7 и 11 квартир быть не может). Количество квартир у =3
Пусть число этажей z=7 (11 подъездов), тогда количество квартир в подъезде составляет 3*7=21 первый подъезд имеет счет квартир: с 1 по 21 второй подъезд: с 22 по 42 Не подходит, т.к. не выполняется условие задачи: во втором подъезде есть квартира номер которой больше 42. Если число этажей 7, а число квартир 3, тогда максимальный номер квартиры во втором подъезде 42.
Возьмем количество этажей равным z=11, тогда количество квартир в подъезде 11*3=33 1 подъезд: с 1 по 33 номер 2 подъезд: с 34 по 66 номер (больше 42). Выполнены все условия задачи. Значит, в доме 11 этажей, 7 подъездов и 3 квартиры на каждом этаже. ответ: 11 этажей.
Уравнение прямой имеет вид y=ax+b, где a - угловой коэффициент, то есть угол наклона прямой, а значит, чтобы прямая была параллельна данной у неё должен быть такой же угловой коэффициент, в данном случае 4. Искомая прямая будет иметь вид y=4x+b. Если прямая проходит через точку (3;-1) это значит, что значению x 3 соответствует значение y -1. Составим уравнение: 4*3+b=-1,12+b=-1,b=-1-12, b=-13. Значит прямая параллельная прямой y=4x+2 и проходящая через точку А(3;-1), задается уравнением y=4x-13.
— + — = —
7 2 7
2x 7x. 36
— + — = —
14 14. 14
2x+7x. 18
———— = —
14. 7
9x. 18
—— = —
14. 7
14 * 18
9x = ————
7
252
9x= ———
7
9x= 36
x= 4
Вот и все.