59/15-13/5=(приводим к общему знаменателю 15, то есть домножаем числитель на три) и получаем выражение 59/15-39/15 и решаем , числители вычитаем , а знаменатель остаётся , получаем дробь 20/15 сокращаем 4/3 оставляем или переводим в 1 целую 1/3-ю
1)если f(-x) = f(x), то f(x) -чётная; если f(-x) = -f(x), то f(x) - нечётная. Переведём на "простой язык": Если вместо "х" в функцию подставим "-х" и при этом функция не изменится, то всё. данная функция - чётная. Если вместо "х" в функцию подставим "-х" и при этом функция только поменяет знак, то всё. данная функция - нечётная. итак, наши примеры: а) эта функция - ни чётная, ни нечётная в)(х-4)(х-2) = х^2 -6x +8. данная функция у = х. Это нечётная функция. с) это чётная функция. d) это ни чётная, ни нечётная функция. е) это нечётная функция ( числитель не помняет знак, а знаменатель поменяет, значит, вся дробь поменяет знак. 2) у = -2х+1 (у = 1 это прямая параллельная оси х. Симметричные точки относительно этой прямой поменяют знак ординаты)
Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3