То графиком функции будет являться параболла если в и с отсутствую, значит они равны нулю 1) a > 0. - Ветви параболы y = ax2 направлены вверх; - Ось симметрии - ось OY; - Вершина параболы - т. O (0,0); - Наименьшее значение y = 0 функция y = ax2 принимает при x = 0. Наибольшего значения нет; - Область значений функции y = ax2, т.е. все значения, которые принимаетy - [0; +?); - При 0 < a < 1 парабола y = ax2 получается из параболы y = x2 сжатием к оси OX в 1/a раз; - При a > 1 - растяжением y = x2 от оси OX в a раз. 2) a < 0. - Ветви параболы y = ax2 направлены вниз; - Парабола y = ax2 симметрична относительно оси OY параболе y = -ax2 (-a > 0); - Наибольшее значение y = 0 функция y = ax2 принимает при x = 0. Наименьших значений нет; - Область значений функции y = ax2 - [-?; 0).
А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
если в и с отсутствую, значит они равны нулю
1) a > 0. - Ветви параболы y = ax2 направлены вверх; - Ось симметрии - ось OY; - Вершина параболы - т. O (0,0); - Наименьшее значение y = 0 функция y = ax2 принимает при x = 0. Наибольшего значения нет; - Область значений функции y = ax2, т.е. все значения, которые принимаетy - [0; +?); - При 0 < a < 1 парабола y = ax2 получается из параболы y = x2 сжатием к оси OX в 1/a раз; - При a > 1 - растяжением y = x2 от оси OX в a раз.
2) a < 0. - Ветви параболы y = ax2 направлены вниз; - Парабола y = ax2 симметрична относительно оси OY параболе y = -ax2 (-a > 0); - Наибольшее значение y = 0 функция y = ax2 принимает при x = 0. Наименьших значений нет; - Область значений функции y = ax2 - [-?; 0).