каноническое уравнение прямой имеет вид
(х-х₁)/l=(у-у₁)/m=(z-z₁)/n, где
{l; m; n}- направляющий вектор прямой.
(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁)=(z-z₁)/(z₂-z₁)- уравнение прямой, проходящей через две точки (x₁; y₁; z₁) и (x₂; y₂;z₂). причем абсолютно все равно, какую точку Вы назовете (x₁; y₁; z₁) , а какую (x₂; y₂;z₂) . К примеру, у меня
х₂-х₁=4-2=2=l ; у₂-у₁=3-(-3)=6=m ; z₂-z₁=-10-6=-16=n .
каноническое уравнение прямой имеет вид
(х-2)/2=(у+3)/6=(z-6)/(-16),
параметрическое же уравнение получим, когда приравняем эти три равные отношения к параметру t
(х-2)/2=t⇒x=2t+2
(у+3)/6=t⇒y=6t-3
(z-6)/(-16)=t⇒z=-16t+6
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.