М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lol1045
lol1045
06.12.2020 18:59 •  Алгебра

Найти наибольшие и наименьшие значения функции f(x)=x^2+3x/x-1 на отрезке [-3; 0]

👇
Открыть все ответы
Ответ:
Sve123TA1
Sve123TA1
06.12.2020
(x-1)(x+5)>0
Находим точки, в которых неравенство равно нулю:
x-1=0    x=1
x+5=0   x=-5
Наносим на прямую (-∞;+∞) эти точки:
-∞-51+∞
Получаем три диапазона: (-∞;-5)   (-5;1)    (1;+∞)
Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона:
(-∞;-5)  Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0  ⇒  +
(-5;1)  Подставим число этого диапазона 0:  (0-1)(0+5)=-1*5=-5<0  ⇒  -
(1;+∞)  Подставим 2:  (2-1)(2+5)=1*7=7>0   ⇒  +
-∞+-5-1++∞   ⇒
x∈(-∞;-5)U(1;+∞).
4,5(38 оценок)
Ответ:
katasmajl
katasmajl
06.12.2020
1/5*6^1024-[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^4+1)(6²+1)(6+1)(6-1)]/(6-1)=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^4+1)(6²+1)(6²-1)]=
=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^4+1)(6^4-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^8-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^16-1)=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^32-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^64-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^128-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^256-1)]=1/5*6^1024-1/5[(6^512+1)(6^512-1)]=1/5*6^1024-1/5(6^1024-1)=1/5*6^1024-1/5*6^1024+1/5=0,2
4,4(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ