1) Всего шаров 5 + 2 = 7, 5 черных и 2 красных шара. a) Всего выбрать два шара: , всего выбрать два черных шара: . Вероятность: b) Всего выбрать два красных шара: c) Вероятность выбрать два разных шара:
2) a) На первой кости нам подойдyт 2, 4, 6, всего же исходов 6: 1, 2, 3, 4, 5, 6. Вероятность выпадения чётного числа очков на кости: . На второй подойдут 3, 4, 5, 6. Вероятность выпадения . Т.к. события независимые, то вероятности перемножаем. . b) Всего у нас 6*6 = 36 исходов выпадения очков на двух костях при том, что мы эти кости различаем. Исходов при котором выпадет хотя бы одна 6 немало, это (на первой кости 6, 1..5) + (1..5, на второй кости 6) + (6, 6): 5 + 5 + 1 = 11. Вероятность равна отношению положительных исходов ко всем исходам:
3) Всего у нас вариантов: ннн, ппп, нпп, ннп, пнп, ппн, пнн, пнп. Устраивают нас варианты: пнн, нпн, ннп. Вероятность у них равная, они несовместны, потому мы будем вероятности складывать.
4) Всего шаров вытащить два шара: вытащить два шара, один из которых окажется белым: . Тогда, вероятность: Вероятность, что среди шаров не будет белого: 1 - 0.2 = 0.8 вытащить чёрный шар вытащить один чёрный и один не чёрный, равна (т.к. не чёрных у нас 6, 5 красных и 1 белый.) Вероятность:
(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
a) Всего выбрать два шара:
b) Всего выбрать два красных шара:
c) Вероятность выбрать два разных шара:
2) a) На первой кости нам подойдyт 2, 4, 6, всего же исходов 6: 1, 2, 3, 4, 5, 6. Вероятность выпадения чётного числа очков на кости:
b) Всего у нас 6*6 = 36 исходов выпадения очков на двух костях при том, что мы эти кости различаем. Исходов при котором выпадет хотя бы одна 6 немало, это (на первой кости 6, 1..5) + (1..5, на второй кости 6) + (6, 6): 5 + 5 + 1 = 11.
Вероятность равна отношению положительных исходов ко всем исходам:
3) Всего у нас
Устраивают нас варианты: пнн, нпн, ннп.
Вероятность у них равная, они несовместны, потому мы будем вероятности складывать.
4) Всего шаров вытащить два шара:
вытащить два шара, один из которых окажется белым:
Тогда, вероятность:
Вероятность, что среди шаров не будет белого: 1 - 0.2 = 0.8
вытащить чёрный шар вытащить один чёрный и один не чёрный, равна
Вероятность: