М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
трифон1
трифон1
27.01.2021 13:59 •  Алгебра

Решите задачу под 4 номером​


Решите задачу под 4 номером​

👇
Открыть все ответы
Ответ:
nastyapuhova1
nastyapuhova1
27.01.2021
На заводе производится сплав, в котором на 2 кг алюминия приходится 1 кг никеля.      2 + 1 = 3 кг сплава.

Первая шахта: 60 рабочих; 5 рабочих часов в день;
           2 кг алюминия или 3 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день:  60*5 = 300 часов.
1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля.
Для 3 кг сплава требуется
1/3 часа на добычу 1 кг никеля и
1 час на добычу  2 кг алюминия.
1 час + 1/3 часа =  1 \frac{1}{3} = \frac{4}{3}  часа.

Пропорция
\frac{4}{3}  часа      -     3 кг сплава
300 часов   -     Х кг сплава
X = 300*3: \frac{4}{3} =900* \frac{3}{4} =675 кг сплава
------------------------------------------
Вторая шахта: 260 рабочих, 5 рабочих часов в день,
              3 кг алюминия или 2 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день:  260*5 = 1300 часов.
1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля.
1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия.
Для 3 кг сплава требуется 
1/2 часа для добычи  1 кг никеля и
1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия.
1/2 часа + 2/3 часа =  \frac{3+4}{6} = \frac{7}{6}  часа.

Пропорция
\frac{7}{6}  часа      -     3 кг сплава
1300 часов    -     Х кг сплава
X = 1300*3: \frac{7}{6} =3900* \frac{6}{7} =3342 \frac{6}{7}  кг сплава

Обе шахты могут обеспечить завод металлом для получения
675 + 3342 \frac{6}{7}=4017 \frac{6}{7} кг сплава

ответ: 4017 \frac{6}{7}  кг сплава.
4,7(38 оценок)
Ответ:
nastyaTYANnastya
nastyaTYANnastya
27.01.2021

Гра́фик фу́нкции — геометрическое понятие в математике, дающее представление о геометрическом образе функции.

Наиболее наглядны графики вещественнозначных функций вещественного переменного одной переменной.

Для непрерывной функции двух переменных {\displaystyle z=f(x,\ y)}{\displaystyle z=f(x,\ y)} их графики представляют собой поверхности в трёхмерном пространстве, являющиеся геометрическим местом точек {\displaystyle z,\ x,\ y.}{\displaystyle z,\ x,\ y.} Эти поверхности могут быть изображены на плоскости в какой-либо изометрической проекции (см. рисунок).

Обычно графики строят в прямоугольной системе координат, на плоскости эту систему координат называют декартовой системой координат. Также графики для повышения наглядности часто строят в других системах координат, например, в полярной системе координат или других косоугольных системах координат.

В случае использования прямоугольной системы координат, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y), которые связаны отображаемой функцией:

точка {\displaystyle (x,y)}(x,y) располагается (или находится) на графике функции {\displaystyle y=f(x)}y=f(x) тогда и только тогда, когда {\displaystyle y=f(x)}y=f(x).

Таким образом, функция может быть адекватно описана своим графиком.

Из определения графика функции следует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции, например, из требования однозначности функции вытекает, что никакая прямая, параллельная оси ординат не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и то же подмножество плоскости).

4,6(71 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ