Имеем уравнение:
x^4 - 2 * x^2 - 8 = 0;
Уравнение является квадратным относительно квадрата переменной x. Вводим переменную. Пусть m = x^2, тогда получим квадратное уравнение:
m^2 - 2 * m - 8 = 0;
D = 4 + 4 * 32 = 36;
m1 = (2 - 6)/2 = -2;
m2 = (2 + 6)/2 = 4;
Выполняем обратную подстановку:
1) x^2 = -2;
Уравнение не имеет корней.
2) x^2 = 4;
x1 = -2;
x2 = 2.
Уравнение имеет два корня.
ответ: -2; 2.
2a²+9a-5=0 видим a1=-5 50-45-5=0 a2=-2.5/(-5)=1/2
a²-25=(a-5)(a+5)
(a+5)(a-0.5)/(a-5)(a+5)=(a-0.5)/(a-5)
Объяснение:
Вот
(10 - (x-a)) / (x-a) <= 0
дробь меньше нуля, когда числитель и знаменатель имеют разные знаки...
x-a < 0
10 - (x-a) >= 0
или
x-a > 0
10 - (x-a) <= 0
решение первой системы:
x-a < 0
x-a <= 10
x-a < 0
решение второй системы:
x-a > 0
x-a >= 10
x-a >= 10
решение первого неравенства: x < a или x >= a+10 (два луча)))
второе неравенство равносильно двойному неравенству:
-4 <= x-3a <= 4
3a-4 <= x <= 4+3a (один отрезок)))
если отметить все значения на числовой прямой, то станет очевидно, что
расстояние между концами первых двух лучей 10 единиц,
длина отрезка-решения второго неравенства = (4+3a)-(3a-4) = 8 единиц
система будет иметь единственное решение, когда эти лучи и отрезок имеют только одну общую точку...
это условие: 3a+4 = 10+a (правый край отрезка = левому краю луча (правого)))
2a = 6
a = 3