Х км/ч - собственная скорость теплохода (х+4) км/ч - скорость теплохода по течению (х-4) км/ч - скорость теплохода против течения
180 км - расстояние, которое теплоход проходит по течению реки и это же расстояние он проходит против течения
180/(х+4) ч - время, которое затратил теплоход на путь 180 км по течению реки 180/(х-4) ч - время, которое затратил теплоход на путь 180 км против течения реки
По условию 2часа теплоход стоял, поэтому всё время движения составляет: 26 ч - 2 ч = 24 ч
Получим уравнение: 180/(х+4) + 180/(х-4) = 24 180/(х+4) + 180/(х-4) - 24 = 0 При ОДЗ х > 0 и х ≠ 4, получаем: 180*(х-4+х+4) - 24х²+384=0 180*2х-24х²+384=0 360x - 24x² + 384 = 0 -24х²+360х+384=0 Упростим, для этого обе части уравнения делим на (-24) и получаем: х²-15х-16=0 D = b²-4ac D= 15² - 4 · 1 · (-16) = 225+64=289 √D = √289 = 17 x₁ = (15 + 17)/2 = 32/2 = 16 км/ч - собственная скорость теплохода (т.к. удовлетворяет ОДЗ) х₂ = (15 - 17)/2 = -2/2 = - 1 - отрицательное значение не удовлетворяет ОДЗ. ответ: 16 км/ч
Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
(х+4) км/ч - скорость теплохода по течению
(х-4) км/ч - скорость теплохода против течения
180 км - расстояние, которое теплоход проходит по течению реки и это же расстояние он проходит против течения
180/(х+4) ч - время, которое затратил теплоход на путь 180 км по течению реки
180/(х-4) ч - время, которое затратил теплоход на путь 180 км против течения реки
По условию 2часа теплоход стоял, поэтому всё время движения составляет:
26 ч - 2 ч = 24 ч
Получим уравнение:
180/(х+4) + 180/(х-4) = 24
180/(х+4) + 180/(х-4) - 24 = 0
При ОДЗ х > 0 и х ≠ 4, получаем:
180*(х-4+х+4) - 24х²+384=0
180*2х-24х²+384=0
360x - 24x² + 384 = 0
-24х²+360х+384=0
Упростим, для этого обе части уравнения делим на (-24) и получаем:
х²-15х-16=0
D = b²-4ac
D= 15² - 4 · 1 · (-16) = 225+64=289
√D = √289 = 17
x₁ = (15 + 17)/2 = 32/2 = 16 км/ч - собственная скорость теплохода (т.к. удовлетворяет ОДЗ)
х₂ = (15 - 17)/2 = -2/2 = - 1 - отрицательное значение не удовлетворяет ОДЗ.
ответ: 16 км/ч