М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fbejgiwndkgk
fbejgiwndkgk
18.03.2022 07:06 •  Алгебра

1) 12-5(х+1)=7+3х-2х 2)-0,2(3-у)+1,2=-0,2(у-1)
3)1-4z-3(1-z)=-5(z+2)
4)(18-x)-7(2x-4)=5x+20
5)3(0,4y+3)-0,6y=8
6)2(2+3)+(4x-1)•3=10x-7
До ть будь ласка

👇
Ответ:

1)х=0

2)у=-1

3)z=-2

4)x=1,3

5)y=-5/3

6)x=-2

4,7(66 оценок)
Открыть все ответы
Ответ:

сумма n последовательных нечетных натуральных чисел при n>1

1+3+5+7+...+(2n-1)=n^2

Доказательство методом математической индукции

База индукции

n=2. 1+3=2^2

Гипотеза индукции

Пусть для n=k утверждение выполняется, т.е. выполняется

1+3+5+7+...+(2k-1)=k^2

Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется

1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2

1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.

По методому математической индукции формула справедлива.

Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.

А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано

4,8(60 оценок)
Ответ:
epoluektova
epoluektova
18.03.2022
x^2 \leq 1 
|x| \leq 1\\ -1 \leq x \leq 1

Приравняем к нулю

(a-x^2)(a+x-2)=0

Произведение равно нулю, если один из множителей равен нулю

a-x^2=0\\ x=\pm \sqrt{a}

Оценим в виде двойного неравенства

-1 \leq \sqrt{a} \leq 1\\ 0 \leq a \leq 1

Т.е. при a \in [0;1] - неравенства будут иметь общее решение, значит при a \in (-\infty;0)\cup(1;+\infty) неравенства общих решений не будет иметь

a+x-2=0\\ x=2-a

Снова оценим в виде двойного неравенства

-1 \leq 2-a \leq 1\,\, |-2\\ \\ -3 \leq -a \leq -1|\cdot (-1)\\ \\ 1 \leq a \leq 3

При a \in (-\infty;1)\cup(3;+\infty) неравенства общих решений не имеют

Общее решение: a \in (-\infty;0)\cup(3;+\infty)

Проверим будут ли неравенства иметь решения при a=0 и а=3

Если а=0, то неравенство запишется так -x^2(x-2)\ \textless \ 0\\ \\ x^2(x-2)\ \textgreater \ 0

Корни будут х=0 и х=2

___-___(0)__-___(2)__+___

x ∈ (2;+∞) 

Следовательно общих решений с x ∈ [-1;1] нет, значит а=0 подходит

Если а=3, то (3-x^2)(x+1)\ \textless \ 0

Приравниваем к нулю:

(3-x^2)(x+1)=0\\ \left[\begin{array}{ccc}3-x^2=0\\ x+1=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_{1,2}=\pm \sqrt{3} \\ x_3=-1\end{array}\right

___+___(-√3)___-___(-1)___+____(√3)___-___

x ∈ (-√3;-1) U (√3;+∞) 

Общее решение неравенства (3-x²)(x+1)<0 с неравенство x²≤1 нет, следовательно а=3 тоже подходит

ответ: a \in (-\infty;0]\cup[3;+\infty)
4,4(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ