На одній ділянці в 5 разів більше дерев ніж на другій після того як з першої ділянки пересадили 22 дерева на другу то на обох ділянках дерев стало порівну. скільки дерев було на кожній ділянці спочатку?
Обозначим все задание S скорость первого штукатура х чего-то там в час (нам не важно в чем они там измеряют свою работу) скорость второго у тогда первый выполнит всю работу за S/x часов, а второй - за S/y часов по условию S/y-S/x=5 кроме того S/(x+y)=6 получили систему из двух уравнений с тремя неизвестными. В общем виде она не решается, но нам надо найти только S/x и S/у - это нам вполне по силам))
Рассмотрим отдельно второе уравнение S/(x+y)=6 S=6(x+y) разделим его на S 1=6x/S+6y/S
обозначим S/x=a и S/y=b (а и b -это как раз время за котторое каждый штукатур выполнит задание!). Тогда первое уравнение b-a=5, а второе 6/a+6/b=1 теперь это система из двух уравнений с двумя неизвестными
b=5+a 6(b+a)/ab=1 6(a+b)=ab 6(a+5+a)=a(5+a) 12a+30=5a+a² a²-7a-30=0 D=7²+4*30=49+120=169 √D=13 a₁=(7-13)/2=-3 отбрасываем отрицательное значение a₂=(7+13)/2=10 a=10 b=5+a=15 ответ: 10 и 15 часов
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай